Suppr超能文献

分析卡氏肺孢子虫基因组内的现有抗真菌药物及其靶标。

Analysis of current antifungal agents and their targets within the Pneumocystis carinii genome.

机构信息

Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267-0056, USA.

出版信息

Curr Drug Targets. 2012 Nov;13(12):1575-85. doi: 10.2174/138945012803530107.

Abstract

Pneumocystis pneumonia (PCP) remains a leading opportunistic infection in patients with weakened immune systems. The fungus causing the infection belongs to the genus, Pneumocystis, and its members are found in a large variety of mammals. Adaptation to the lung environment of a host with an intact immune system has been a key to its successful survival. Unfortunately, the metabolic strategies used by these fungi to grow and survive in this context are largely unknown. There were considerable impediments to standard approaches for investigation of this unique pathogen, the most problematic being the lack of a long term in vitro culture system. The absence of an ex vivo cultivation method remains today, and many fundamental scientific questions about the basic biology, metabolism, and life cycle of Pneumocystis are unanswered. Recent progress in sequencing of the Pneumocystis carinii genome, a species infecting rats, permitted a more informative search for genes and biological pathways within this pathogen that are known to be targets for existing antifungal agents. In this work, we review the classes of antifungal drugs with respect to their potential applicability to the treatment of PCP. Classes covered in the review are the azoles, polyenes, allylamines, and echinocandins. Factors limiting the use of standard antifungal treatments and the currently available alternatives (trimethoprim-sulfamethoxazole, atovaquone, and pentamidine) are discussed. A summary of genomic sequences within Pneumocystis carinii associated with the corresponding targeted biological pathways is provided. All sequences are available via the Pneumocystis Genome Project at http://pgp.cchmc.org/.

摘要

卡氏肺孢子虫肺炎(PCP)仍然是免疫系统较弱的患者的主要机会性感染。引起感染的真菌属于肺孢子菌属,其成员存在于多种哺乳动物中。适应宿主完整免疫系统的肺部环境是其成功生存的关键。不幸的是,这些真菌在这种情况下生长和存活所使用的代谢策略在很大程度上是未知的。由于存在相当多的障碍,标准方法无法用于研究这种独特的病原体,其中最成问题的是缺乏长期的体外培养系统。至今仍然缺乏一种体外培养方法,关于卡氏肺孢子虫的基本生物学、代谢和生命周期的许多基本科学问题仍然没有答案。最近对感染大鼠的卡氏肺孢子虫基因组进行测序的进展,使得可以更有针对性地寻找该病原体中已知是现有抗真菌药物靶标的基因和生物途径。在这项工作中,我们回顾了抗真菌药物的类别,以及它们在治疗 PCP 方面的潜在适用性。综述中涵盖的类别有唑类、多烯类、烯丙胺类和棘白菌素类。讨论了限制标准抗真菌治疗和现有替代药物(甲氧苄啶-磺胺甲恶唑、阿托伐醌和喷他脒)使用的因素。还提供了与相应靶向生物途径相关的卡氏肺孢子虫内基因组序列的摘要。所有序列均可通过 Pneumocystis Genome Project 在 http://pgp.cchmc.org/ 获得。

相似文献

1
Analysis of current antifungal agents and their targets within the Pneumocystis carinii genome.
Curr Drug Targets. 2012 Nov;13(12):1575-85. doi: 10.2174/138945012803530107.
2
Sterol biosynthesis and sterol uptake in the fungal pathogen Pneumocystis carinii.
FEMS Microbiol Lett. 2010 Oct;311(1):1-9. doi: 10.1111/j.1574-6968.2010.02007.x.
3
Are cytochrome b gene mutations the only cause of atovaquone resistance in Pneumocystis?
Drug Resist Updat. 2001 Oct;4(5):322-9. doi: 10.1054/drup.2001.0221.
7
Susceptibility of Pneumocystis to echinocandins in suspension and biofilm cultures.
Antimicrob Agents Chemother. 2011 Oct;55(10):4513-8. doi: 10.1128/AAC.00017-11. Epub 2011 Jul 25.
10
Enhanced pneumocystis carinii activity of new primaquine analogues.
Bioorg Med Chem Lett. 2000 Oct 2;10(19):2205-8. doi: 10.1016/s0960-894x(00)00436-4.

引用本文的文献

1
Ibrexafungerp: A narrative overview.
Curr Res Microb Sci. 2024 May 27;6:100245. doi: 10.1016/j.crmicr.2024.100245. eCollection 2024.
2
Deep mutational scanning of Pneumocystis jirovecii dihydrofolate reductase reveals allosteric mechanism of resistance to an antifolate.
PLoS Genet. 2024 Apr 29;20(4):e1011252. doi: 10.1371/journal.pgen.1011252. eCollection 2024 Apr.
4
Drug-likeness of linear pentamidine analogues and their impact on the hERG K channel - correlation with structural features.
RSC Adv. 2019 Dec 2;9(66):38355-38371. doi: 10.1039/c9ra08404e. eCollection 2019 Nov 25.
5
Pulmonary cannonballs in a patient with Acquired Immunodeficiency Syndrome (AIDS).
IDCases. 2021 Jul 16;25:e01229. doi: 10.1016/j.idcr.2021.e01229. eCollection 2021.
6
Ibrexafungerp: A First-in-Class Oral Triterpenoid Glucan Synthase Inhibitor.
J Fungi (Basel). 2021 Feb 25;7(3):163. doi: 10.3390/jof7030163.
7
Drug-Resistant Fungi: An Emerging Challenge Threatening Our Limited Antifungal Armamentarium.
Antibiotics (Basel). 2020 Dec 8;9(12):877. doi: 10.3390/antibiotics9120877.
8
Cinnamic Acid Conjugates in the Rescuing and Repurposing of Classical Antimalarial Drugs.
Molecules. 2019 Dec 24;25(1):66. doi: 10.3390/molecules25010066.
9
Structural basis for the acetylation of histone H3K9 and H3K27 mediated by the histone chaperone Vps75 in .
Signal Transduct Target Ther. 2019 May 10;4:14. doi: 10.1038/s41392-019-0047-8. eCollection 2019.
10
Chloroquine Analogues as Leads against Pneumocystis Lung Pathogens.
Antimicrob Agents Chemother. 2018 Oct 24;62(11). doi: 10.1128/AAC.00983-18. Print 2018 Nov.

本文引用的文献

1
Catalysis and sulfa drug resistance in dihydropteroate synthase.
Science. 2012 Mar 2;335(6072):1110-4. doi: 10.1126/science.1214641.
2
Acute kidney injury associated with trimethoprim/sulfamethoxazole.
J Antimicrob Chemother. 2012 May;67(5):1271-7. doi: 10.1093/jac/dks030. Epub 2012 Feb 20.
3
Echinocandins: are they all the same?
J Chemother. 2011 Dec;23(6):319-25. doi: 10.1179/joc.2011.23.6.319.
4
KEGG for integration and interpretation of large-scale molecular data sets.
Nucleic Acids Res. 2012 Jan;40(Database issue):D109-14. doi: 10.1093/nar/gkr988. Epub 2011 Nov 10.
5
Therapeutic target database update 2012: a resource for facilitating target-oriented drug discovery.
Nucleic Acids Res. 2012 Jan;40(Database issue):D1128-36. doi: 10.1093/nar/gkr797. Epub 2011 Sep 24.
6
Current role of echinocandins in the management of invasive aspergillosis.
Curr Infect Dis Rep. 2011 Dec;13(6):517-27. doi: 10.1007/s11908-011-0216-6.
7
Structural genomics of infectious disease drug targets: the SSGCID.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Sep 1;67(Pt 9):979-84. doi: 10.1107/S1744309111029204. Epub 2011 Aug 13.
8
Addressing current medical needs in invasive fungal infection prevention and treatment with new antifungal agents, strategies and formulations.
Expert Opin Emerg Drugs. 2011 Sep;16(3):559-586. doi: 10.1517/14728214.2011.607811. Epub 2011 Aug 17.
9
Susceptibility of Pneumocystis to echinocandins in suspension and biofilm cultures.
Antimicrob Agents Chemother. 2011 Oct;55(10):4513-8. doi: 10.1128/AAC.00017-11. Epub 2011 Jul 25.
10
Echinocandins: addressing outstanding questions surrounding treatment of invasive fungal infections.
Am J Health Syst Pharm. 2011 Jul 1;68(13):1207-20. doi: 10.2146/ajhp100456.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验