Suppr超能文献

孤束核内密集兴奋性网络中的低保真 GABA 传递。

Low-fidelity GABA transmission within a dense excitatory network of the solitary tract nucleus.

机构信息

Department of Physiology & Pharmacology, Oregon Health & Science University, Portland OR, USA.

出版信息

J Physiol. 2012 Nov 15;590(22):5677-89. doi: 10.1113/jphysiol.2012.241976. Epub 2012 Sep 3.

Abstract

Visceral primary afferents enter the CNS at the caudal solitary tract nucleus (NTS), and activate central pathways key to autonomic and homeostatic regulation. Excitatory transmission from primary solitary tract (ST)-afferents consists of multiple contacts originating from single axons that offer a remarkably high probability of glutamate release and high safety factor for ST afferent excitation. ST afferent activation sometimes triggers polysynaptic GABAergic circuits, which feedback onto second-order NTS neurons. Although inhibitory transmission is observed at second-order neurons, much less is known about the organization and mechanisms regulating GABA transmission. Here, we used a focal pipette to deliver minimal stimulus shocks near second-order NTS neurons in rat brainstem slices and directly activated single GABAergic axons. Most minimal focal shocks activated low jitter EPSCs from single axons with characteristics resembling ST afferents. Much less commonly (9% of sites), minimal focal shocks activated monosynaptic IPSCs at fixed latency (low jitter) that often failed (30%) and had no frequency-dependent facilitation or depression. These GABA release characteristics contrasted markedly to the unfailing, large amplitudes for glutamate released during ST-EPCSs recorded from the same neurons. Surprisingly, unitary GABAergic IPSCs were only weakly calcium dependent. In some neurons, strong focal shocks evoked compound IPSCs indicating convergent summation of multiple inhibitory axons. Our studies demonstrate that second-order NTS neurons receive GABAergic transmission from a diffuse network of inhibitory axons that rely on an intrinsically less reliable and substantially weaker release apparatus than ST excitation. Effective inhibition depends on co-activation of convergent inputs to blunt excitatory drive.

摘要

内脏初级传入纤维在尾侧孤束核(NTS)进入中枢神经系统,并激活对自主和体内平衡调节至关重要的中枢途径。初级孤束(ST)传入的兴奋性传递由源自单个轴突的多个接触组成,这些接触提供了极高的谷氨酸释放概率和 ST 传入兴奋的高安全系数。ST 传入的激活有时会触发多突触 GABA 能回路,这些回路反馈到第二级 NTS 神经元。尽管在第二级神经元中观察到抑制性传递,但关于 GABA 传递的组织和机制知之甚少。在这里,我们使用聚焦微电极在大鼠脑干切片中的第二级 NTS 神经元附近传递最小刺激冲击,并直接激活单个 GABA 能轴突。大多数最小的焦点冲击会从单个轴突激活具有类似于 ST 传入特征的低抖动 EPSC。很少见(9%的部位),最小的焦点冲击会以固定潜伏期(低抖动)激活单突触 IPSC,这些 IPSC 经常失败(30%),并且没有频率依赖性易化或压抑。这些 GABA 释放特征与从同一神经元记录的 ST-EPCs 中释放的谷氨酸具有的可靠、大振幅形成鲜明对比。令人惊讶的是,单位 IPSC 仅具有较弱的钙依赖性。在一些神经元中,强烈的焦点冲击会引发复合 IPSC,表明多个抑制性轴突的会聚总和。我们的研究表明,第二级 NTS 神经元接收来自抑制性轴突的弥散网络的 GABA 传递,该网络依赖于内在可靠性较低且释放装置明显较弱的装置,而不是 ST 兴奋。有效的抑制取决于会聚输入的共同激活,以削弱兴奋驱动。

相似文献

1
Low-fidelity GABA transmission within a dense excitatory network of the solitary tract nucleus.
J Physiol. 2012 Nov 15;590(22):5677-89. doi: 10.1113/jphysiol.2012.241976. Epub 2012 Sep 3.
2
Organization and properties of GABAergic neurons in solitary tract nucleus (NTS).
J Neurophysiol. 2008 Apr;99(4):1712-22. doi: 10.1152/jn.00038.2008. Epub 2008 Feb 13.
3
Comparison of baroreceptive to other afferent synaptic transmission to the medial solitary tract nucleus.
Am J Physiol Heart Circ Physiol. 2008 Nov;295(5):H2032-42. doi: 10.1152/ajpheart.00568.2008. Epub 2008 Sep 12.
4
Independent transmission of convergent visceral primary afferents in the solitary tract nucleus.
J Neurophysiol. 2013 Jan;109(2):507-17. doi: 10.1152/jn.00726.2012. Epub 2012 Oct 31.
5
Convergence of cranial visceral afferents within the solitary tract nucleus.
J Neurosci. 2009 Oct 14;29(41):12886-95. doi: 10.1523/JNEUROSCI.3491-09.2009.
6
Reliability of monosynaptic sensory transmission in brain stem neurons in vitro.
J Neurophysiol. 2001 May;85(5):2213-23. doi: 10.1152/jn.2001.85.5.2213.
7
TRPV1 marks synaptic segregation of multiple convergent afferents at the rat medial solitary tract nucleus.
PLoS One. 2011;6(9):e25015. doi: 10.1371/journal.pone.0025015. Epub 2011 Sep 20.
8
GABA(B)-mediated inhibition of multiple modes of glutamate release in the nucleus of the solitary tract.
J Neurophysiol. 2011 Oct;106(4):1833-40. doi: 10.1152/jn.00476.2011. Epub 2011 Jul 6.
10
Oxytocin enhances cranial visceral afferent synaptic transmission to the solitary tract nucleus.
J Neurosci. 2008 Nov 5;28(45):11731-40. doi: 10.1523/JNEUROSCI.3419-08.2008.

引用本文的文献

2
Hindbrain ghrelin and liver-expressed antimicrobial peptide 2, ligands for growth hormone secretagogue receptor, bidirectionally control food intake.
Am J Physiol Regul Integr Comp Physiol. 2023 Apr 1;324(4):R547-R555. doi: 10.1152/ajpregu.00232.2022. Epub 2023 Feb 27.
3
Investigating the possible mechanisms of autonomic dysfunction post-COVID-19.
Auton Neurosci. 2023 Mar;245:103071. doi: 10.1016/j.autneu.2022.103071. Epub 2022 Dec 24.
5
Extensive Inhibitory Gating of Viscerosensory Signals by a Sparse Network of Somatostatin Neurons.
J Neurosci. 2019 Oct 9;39(41):8038-8050. doi: 10.1523/JNEUROSCI.3036-18.2019. Epub 2019 Aug 30.
7
Dedicated C-fibre viscerosensory pathways to central nucleus of the amygdala.
J Physiol. 2017 Feb 1;595(3):901-917. doi: 10.1113/JP272898. Epub 2016 Oct 25.
8
Glutamatergic drive facilitates synaptic inhibition of dorsal vagal motor neurons after experimentally induced diabetes in mice.
J Neurophysiol. 2016 Sep 1;116(3):1498-506. doi: 10.1152/jn.00325.2016. Epub 2016 Jul 6.
9
Feed-forward and reciprocal inhibition for gain and phase timing control in a computational model of repetitive cough.
J Appl Physiol (1985). 2016 Jul 1;121(1):268-78. doi: 10.1152/japplphysiol.00790.2015. Epub 2016 Jun 9.
10
Peptide and lipid modulation of glutamatergic afferent synaptic transmission in the solitary tract nucleus.
Front Neurosci. 2013 Jan 10;6:191. doi: 10.3389/fnins.2012.00191. eCollection 2012.

本文引用的文献

2
TRPV1 marks synaptic segregation of multiple convergent afferents at the rat medial solitary tract nucleus.
PLoS One. 2011;6(9):e25015. doi: 10.1371/journal.pone.0025015. Epub 2011 Sep 20.
3
GABA(B) restrains release from singly-evoked GABA terminals.
Neuroscience. 2011 Oct 13;193:54-62. doi: 10.1016/j.neuroscience.2011.07.042. Epub 2011 Jul 27.
4
Heterosynaptic crosstalk: GABA-glutamate metabotropic receptors interactively control glutamate release in solitary tract nucleus.
Neuroscience. 2011 Feb 3;174:1-9. doi: 10.1016/j.neuroscience.2010.11.053. Epub 2010 Dec 1.
5
Convergence of cranial visceral afferents within the solitary tract nucleus.
J Neurosci. 2009 Oct 14;29(41):12886-95. doi: 10.1523/JNEUROSCI.3491-09.2009.
6
Exercise-induced neuronal plasticity in central autonomic networks: role in cardiovascular control.
Exp Physiol. 2009 Sep;94(9):947-60. doi: 10.1113/expphysiol.2009.047449. Epub 2009 Jul 17.
8
Expression of Group I metabotropic glutamate receptors on phenotypically different cells within the nucleus of the solitary tract in the rat.
Neuroscience. 2009 Mar 17;159(2):701-16. doi: 10.1016/j.neuroscience.2008.09.060. Epub 2008 Oct 17.
9
Oxytocin enhances cranial visceral afferent synaptic transmission to the solitary tract nucleus.
J Neurosci. 2008 Nov 5;28(45):11731-40. doi: 10.1523/JNEUROSCI.3419-08.2008.
10
Multiple roles of calcium ions in the regulation of neurotransmitter release.
Neuron. 2008 Sep 25;59(6):861-72. doi: 10.1016/j.neuron.2008.08.019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验