Suppr超能文献

微流控中的力学生物标志物的开发利用。

Exploiting mechanical biomarkers in microfluidics.

机构信息

The Procter and Gamble Company, Mason, Ohio 45040, USA.

出版信息

Lab Chip. 2012 Oct 21;12(20):4006-9. doi: 10.1039/c2lc90100e.

Abstract

Cellular mechanical properties have been observed to have important implications for pathogenesis and pathophysiology. These observations have led to the recent development of a unique class of biomarkers: mechanical biomarkers. Compared with the traditional biochemical-based biomarkers (e.g., antibodies), mechanical biomarkers have many advantages such as label-free, low cost, convenient maintenance, and reduced assay time. In the past few years, there has been an increasing effort to exploit cellular mechanical biomarkers in microfluidic devices. This trend makes sense because microfluidic devices often feature structures that have characteristic lengths similar to those of cells, which renders them uniquely capable of probing and utilizing mechanical biomarkers. In this Focus article, we discuss a few examples of mechanical biomarker-based microfluidic applications. We believe that these examples are just the tip of the iceberg and that the full potential of mechanical biomarkers in microfluidic-based diagnostics and therapeutics has yet to be revealed.

摘要

细胞力学特性已被观察到对发病机制和病理生理学有重要影响。这些观察结果导致了一类独特的生物标志物的最近发展:力学生物标志物。与传统的基于生化的生物标志物(例如抗体)相比,力学生物标志物具有许多优点,例如无标记、低成本、方便维护和缩短检测时间。在过去几年中,人们越来越努力地在微流控设备中利用细胞力学生物标志物。这种趋势是有道理的,因为微流控设备通常具有与细胞相似的特征长度的结构,这使它们能够独特地探测和利用力学生物标志物。在这篇专题文章中,我们讨论了一些基于力学生物标志物的微流控应用的例子。我们相信,这些例子只是冰山一角,力学生物标志物在微流控诊断和治疗中的全部潜力尚未被揭示。

相似文献

1
Exploiting mechanical biomarkers in microfluidics.
Lab Chip. 2012 Oct 21;12(20):4006-9. doi: 10.1039/c2lc90100e.
2
Nanomaterial-assisted microfluidics for multiplex assays.
Mikrochim Acta. 2022 Mar 11;189(4):139. doi: 10.1007/s00604-022-05226-4.
3
Microfluidic opportunities in the field of nutrition.
Lab Chip. 2013 Oct 21;13(20):3993-4003. doi: 10.1039/c3lc90090h.
4
Applications of microfluidics for molecular diagnostics.
Methods Mol Biol. 2013;949:305-34. doi: 10.1007/978-1-62703-134-9_20.
5
Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics.
Lab Chip. 2012 Sep 21;12(18):3249-66. doi: 10.1039/c2lc40630f. Epub 2012 Aug 2.
6
Microfluidic-integrated biosensors: prospects for point-of-care diagnostics.
Biotechnol J. 2013 Nov;8(11):1267-79. doi: 10.1002/biot.201200386. Epub 2013 Sep 6.
7
Optics-Integrated Microfluidic Platforms for Biomolecular Analyses.
Biophys J. 2016 Apr 26;110(8):1684-1697. doi: 10.1016/j.bpj.2016.03.018.
8
A new mechanobiological era: microfluidic pathways to apply and sense forces at the cellular level.
Curr Opin Chem Biol. 2012 Aug;16(3-4):400-8. doi: 10.1016/j.cbpa.2012.03.014. Epub 2012 Apr 21.
9
Microfluidic platforms for biomarker analysis.
Lab Chip. 2014 May 7;14(9):1496-514. doi: 10.1039/c3lc51124c. Epub 2014 Mar 25.
10
3D printed conformal microfluidics for isolation and profiling of biomarkers from whole organs.
Lab Chip. 2017 Jul 25;17(15):2561-2571. doi: 10.1039/c7lc00468k.

引用本文的文献

1
Micro-Scale Topography Triggers Dynamic 3D Nuclear Deformations.
Adv Sci (Weinh). 2025 Mar;12(11):e2410052. doi: 10.1002/advs.202410052. Epub 2025 Jan 28.
3
Deformation and rupture of microcapsules flowing through constricted capillary.
Sci Rep. 2021 Apr 8;11(1):7707. doi: 10.1038/s41598-021-86833-8.
4
Acoustic Cell Separation Based on Density and Mechanical Properties.
J Biomech Eng. 2020 Mar 1;142(3):0310051-9. doi: 10.1115/1.4046180.
5
One-Way Particle Transport Using Oscillatory Flow in Asymmetric Traps.
Small. 2018 Mar;14(9). doi: 10.1002/smll.201702724. Epub 2018 Jan 29.
6
Label-Free Microfluidic Manipulation of Particles and Cells in Magnetic Liquids.
Adv Funct Mater. 2016 Jun 14;26(22):3916-3932. doi: 10.1002/adfm.201504178. Epub 2016 Apr 14.
10
Microfluidic cell fragmentation for mechanical phenotyping of cancer cells.
Biomicrofluidics. 2016 Mar 15;10(2):021102. doi: 10.1063/1.4944057. eCollection 2016 Mar.

本文引用的文献

1
On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves.
Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11105-9. doi: 10.1073/pnas.1209288109. Epub 2012 Jun 25.
2
High-throughput biophysical measurement of human red blood cells.
Lab Chip. 2012 Jul 21;12(14):2560-7. doi: 10.1039/c2lc21210b. Epub 2012 May 14.
3
An integrated, multiparametric flow cytometry chip using "microfluidic drifting" based three-dimensional hydrodynamic focusing.
Biomicrofluidics. 2012 Jun;6(2):24113-241139. doi: 10.1063/1.3701566. Epub 2012 Apr 20.
4
Hydrodynamic stretching of single cells for large population mechanical phenotyping.
Proc Natl Acad Sci U S A. 2012 May 15;109(20):7630-5. doi: 10.1073/pnas.1200107109. Epub 2012 Apr 30.
5
Sorting cells by size, shape and deformability.
Lab Chip. 2012 Mar 21;12(6):1048-51. doi: 10.1039/c2lc21083e. Epub 2012 Feb 10.
6
(Micro)managing the mechanical microenvironment.
Integr Biol (Camb). 2011 Oct;3(10):959-71. doi: 10.1039/c1ib00056j. Epub 2011 Sep 19.
7
A microfabricated deformability-based flow cytometer with application to malaria.
Lab Chip. 2011 Mar 21;11(6):1065-73. doi: 10.1039/c0lc00472c. Epub 2011 Feb 3.
8
Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW).
Lab Chip. 2009 Oct 21;9(20):2890-5. doi: 10.1039/b910595f. Epub 2009 Aug 5.
9
Continuous inertial focusing, ordering, and separation of particles in microchannels.
Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):18892-7. doi: 10.1073/pnas.0704958104. Epub 2007 Nov 19.
10
Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum.
Proc Natl Acad Sci U S A. 2007 May 29;104(22):9213-7. doi: 10.1073/pnas.0703433104. Epub 2007 May 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验