Suppr超能文献

利用表面声波对单个微颗粒、细胞和生物进行片上操控。

On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves.

机构信息

Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11105-9. doi: 10.1073/pnas.1209288109. Epub 2012 Jun 25.

Abstract

Techniques that can dexterously manipulate single particles, cells, and organisms are invaluable for many applications in biology, chemistry, engineering, and physics. Here, we demonstrate standing surface acoustic wave based "acoustic tweezers" that can trap and manipulate single microparticles, cells, and entire organisms (i.e., Caenorhabditis elegans) in a single-layer microfluidic chip. Our acoustic tweezers utilize the wide resonance band of chirped interdigital transducers to achieve real-time control of a standing surface acoustic wave field, which enables flexible manipulation of most known microparticles. The power density required by our acoustic device is significantly lower than its optical counterparts (10,000,000 times less than optical tweezers and 100 times less than optoelectronic tweezers), which renders the technique more biocompatible and amenable to miniaturization. Cell-viability tests were conducted to verify the tweezers' compatibility with biological objects. With its advantages in biocompatibility, miniaturization, and versatility, the acoustic tweezers presented here will become a powerful tool for many disciplines of science and engineering.

摘要

能够灵巧地操纵单个粒子、细胞和生物体的技术在生物学、化学、工程学和物理学的许多应用中是非常宝贵的。在这里,我们展示了基于驻波表面声波的“声镊”,它可以在单层微流控芯片中捕获和操纵单个微粒子、细胞和整个生物体(即秀丽隐杆线虫)。我们的声镊利用啁啾叉指换能器的宽共振带来实现对驻波声场的实时控制,从而实现对大多数已知微粒子的灵活操纵。我们的声设备所需的功率密度明显低于其光学对应物(比光镊低 10,000,000 倍,比光电镊低 100 倍),这使得该技术更具生物相容性,更易于小型化。进行了细胞存活试验以验证镊子与生物物体的兼容性。凭借其在生物相容性、小型化和多功能性方面的优势,这里介绍的声镊将成为许多科学和工程学科的有力工具。

相似文献

1
On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves.
Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11105-9. doi: 10.1073/pnas.1209288109. Epub 2012 Jun 25.
2
Rotational manipulation of single cells and organisms using acoustic waves.
Nat Commun. 2016 Mar 23;7:11085. doi: 10.1038/ncomms11085.
3
Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW).
Lab Chip. 2009 Oct 21;9(20):2890-5. doi: 10.1039/b910595f. Epub 2009 Aug 5.
4
Three-dimensional manipulation of single cells using surface acoustic waves.
Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):1522-7. doi: 10.1073/pnas.1524813113. Epub 2016 Jan 25.
6
The complexity of surface acoustic wave fields used for microfluidic applications.
Ultrasonics. 2020 Aug;106:106160. doi: 10.1016/j.ultras.2020.106160. Epub 2020 Apr 14.
7
Microfluidic integrated acoustic waving for manipulation of cells and molecules.
Biosens Bioelectron. 2016 Nov 15;85:714-725. doi: 10.1016/j.bios.2016.05.059. Epub 2016 May 20.
8
Single-Beam Acoustic Tweezers for Cell Biology: Molecular to In Vivo Level.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Oct;71(10):1269-1288. doi: 10.1109/TUFFC.2024.3456083. Epub 2024 Oct 10.
10
Potential-well model in acoustic tweezers.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Jun;57(6):1451-9. doi: 10.1109/TUFFC.2010.1564.

引用本文的文献

1
Efficient Particle Aggregation Through SSAW Phase Modulation.
Micromachines (Basel). 2025 Aug 5;16(8):910. doi: 10.3390/mi16080910.
2
Acoustic technologies for the orchestration of cellular functions for therapeutic applications.
Sci Adv. 2025 Jul 18;11(29):eadu4759. doi: 10.1126/sciadv.adu4759.
3
Technology Roadmap of Micro/Nanorobots.
ACS Nano. 2025 Jul 15;19(27):24174-24334. doi: 10.1021/acsnano.5c03911. Epub 2025 Jun 27.
4
A Slanted-Finger Interdigitated Transducer Microfluidic Device for Particles Sorting.
Micromachines (Basel). 2025 Apr 20;16(4):483. doi: 10.3390/mi16040483.
5
Multiplexed Single-Cell Rheology Probing Using Surface Acoustic Waves.
Small Sci. 2024 Feb 13;4(4):2300146. doi: 10.1002/smsc.202300146. eCollection 2024 Apr.
6
Coalescence of multiple pairs of levitated droplets using dual-side phased arrays.
Ultrason Sonochem. 2025 May;116:107327. doi: 10.1016/j.ultsonch.2025.107327. Epub 2025 Mar 31.
7
Self-focusing high-frequency ultrasonic transducers for non-destructive testing applications.
Sci Rep. 2025 Mar 14;15(1):8845. doi: 10.1038/s41598-025-93195-y.
9
Contaminant Removal Using Vibrating Surfaces: Nanoscale Insights and a Universal Scaling Law.
Nano Lett. 2025 Mar 19;25(11):4284-4290. doi: 10.1021/acs.nanolett.4c05973. Epub 2025 Mar 5.
10
Wireless Frequency-Multiplexed Acoustic Array-based Acoustofluidics.
Adv Mater Technol. 2024 Dec 2;9(23). doi: 10.1002/admt.202400572. Epub 2024 Jul 25.

本文引用的文献

1
Acoustofluidics 9: Modelling and applications of planar resonant devices for acoustic particle manipulation.
Lab Chip. 2012 Apr 21;12(8):1417-1426. doi: 10.1039/c2lc21257a. Epub 2012 Mar 9.
2
Acoustofluidics 8: applications of acoustophoresis in continuous flow microsystems.
Lab Chip. 2012 Apr 7;12(7):1210-23. doi: 10.1039/c2lc21256k. Epub 2012 Feb 24.
3
Acoustofluidics 7: The acoustic radiation force on small particles.
Lab Chip. 2012 Mar 21;12(6):1014-21. doi: 10.1039/c2lc21068a. Epub 2012 Feb 21.
4
Acoustofluidics 6: Experimental characterization of ultrasonic particle manipulation devices.
Lab Chip. 2012 Mar 7;12(5):852-62. doi: 10.1039/c2lc21067c. Epub 2012 Feb 2.
5
Acoustofluidics 5: Building microfluidic acoustic resonators.
Lab Chip. 2012 Feb 21;12(4):684-95. doi: 10.1039/c1lc20996e. Epub 2012 Jan 16.
6
Uniform mixing in paper-based microfluidic systems using surface acoustic waves.
Lab Chip. 2012 Feb 21;12(4):773-9. doi: 10.1039/c2lc21065g. Epub 2011 Dec 22.
7
Acoustofluidics 1: Governing equations in microfluidics.
Lab Chip. 2011 Nov 21;11(22):3742-51. doi: 10.1039/c1lc20658c. Epub 2011 Oct 20.
9
Magnetic manipulation of self-assembled colloidal asters.
Nat Mater. 2011 Aug 7;10(9):698-703. doi: 10.1038/nmat3083.
10
Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity.
Lab Chip. 2011 Sep 7;11(17):2893-900. doi: 10.1039/c1lc20307j. Epub 2011 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验