Suppr超能文献

基于无线频率复用声学阵列的声流控技术。

Wireless Frequency-Multiplexed Acoustic Array-based Acoustofluidics.

作者信息

Li Jiali, Bo Luyu, Li Teng, Zhao Penghui, Du Yingshan, Cai Bowen, Shen Liang, Sun Wujin, Zhou Wei, Tian Zhenhua

机构信息

Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA.

Department of Biological System Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA.

出版信息

Adv Mater Technol. 2024 Dec 2;9(23). doi: 10.1002/admt.202400572. Epub 2024 Jul 25.

Abstract

Acoustofluidics has shown great potential in enabling on-chip technologies for driving liquid flows and manipulating particles and cells for engineering, chemical, and biomedical applications. To introduce on-demand liquid sample processing and micro/nano-object manipulation functions to wearable and embeddable electronics, wireless acoustofluidic chips are highly desired. This paper presents wireless acoustofluidic chips to generate acoustic waves carrying sufficient energy and achieve key acoustofluidic functions, including arranging particles and cells, generating fluid streaming, and enriching in-droplet particles. To enable these functions, our wireless acoustofluidic chips leverage mechanisms, including inductive coupling-based wireless power transfer (WPT), frequency multiplexing-based control of multiple acoustic waves, and the resultant acoustic radiation and drag forces. For validation, the wirelessly generated acoustic waves are measured using laser vibrometry when different materials (, bone, tissue, and hand) are inserted between the WPT transmitter and receiver. Moreover, our wireless acoustofluidic chips successfully arrange nanoparticles into different patterns, align cells into parallel pearl chains, generate streaming, and enrich in-droplet microparticles. We anticipate this research to facilitate the development of embeddable wireless on-chip flow generators, wearable sensors with liquid sample processing functions, and implantable devices with flow generation and acoustic stimulation abilities for engineering, veterinary, and biomedical applications.

摘要

声流体技术在实现用于驱动液体流动以及操控颗粒和细胞的片上技术方面展现出了巨大潜力,可应用于工程、化学和生物医学领域。为了将按需液体样本处理以及微/纳米物体操控功能引入可穿戴和可植入电子设备中,人们迫切需要无线声流体芯片。本文介绍了能够产生携带足够能量的声波并实现关键声流体功能的无线声流体芯片,这些功能包括排列颗粒和细胞、产生流体流动以及富集液滴内的颗粒。为实现这些功能,我们的无线声流体芯片利用了多种机制,包括基于电感耦合的无线功率传输(WPT)、基于频率复用的多声波控制以及由此产生的声辐射力和拖曳力。为进行验证,当在WPT发射器和接收器之间插入不同材料(如骨头、组织和手)时,使用激光测振法测量无线产生的声波。此外,我们的无线声流体芯片成功地将纳米颗粒排列成不同图案,使细胞排列成平行的珍珠链,产生流体流动,并富集液滴内的微粒。我们预计这项研究将促进可植入无线片上流发生器、具有液体样本处理功能的可穿戴传感器以及具有流体产生和声学刺激能力的可植入设备的开发,以用于工程、兽医和生物医学应用。

相似文献

1
Wireless Frequency-Multiplexed Acoustic Array-based Acoustofluidics.
Adv Mater Technol. 2024 Dec 2;9(23). doi: 10.1002/admt.202400572. Epub 2024 Jul 25.
2
Capillary-based, multifunctional manipulation of particles and fluids focused surface acoustic waves.
J Phys D Appl Phys. 2024 Aug;57(30). doi: 10.1088/1361-6463/ad415a. Epub 2024 May 7.
3
Enriching Nanoparticles via Acoustofluidics.
ACS Nano. 2017 Jan 24;11(1):603-612. doi: 10.1021/acsnano.6b06784. Epub 2017 Jan 9.
4
Acoustic Waves Coupling with Polydimethylsiloxane in Reconfigurable Acoustofluidic Platform.
Adv Sci (Weinh). 2024 Dec;11(47):e2407293. doi: 10.1002/advs.202407293. Epub 2024 Oct 30.
5
Acoustofluidic black holes for multifunctional in-droplet particle manipulation.
Sci Adv. 2022 Apr;8(13):eabm2592. doi: 10.1126/sciadv.abm2592. Epub 2022 Apr 1.
6
Acoustofluidic precise manipulation: Recent advances in applications for micro/nano bioparticles.
Adv Colloid Interface Sci. 2024 Oct;332:103276. doi: 10.1016/j.cis.2024.103276. Epub 2024 Aug 12.
7
Submicron Particle Concentration and Patterning with Ultralow Frequency Acoustic Vibration.
Anal Chem. 2020 Oct 6;92(19):12795-12800. doi: 10.1021/acs.analchem.0c02765. Epub 2020 Sep 21.
8
Frequency-locked Wireless Multifunctional Surface Acoustic Wave Sensors.
Adv Sens Res. 2024 Dec;3(12). doi: 10.1002/adsr.202400083. Epub 2024 Aug 11.
9
Residue-free acoustofluidic manipulation of microparticles via removal of microchannel anechoic corner.
Ultrason Sonochem. 2022 Sep;89:106161. doi: 10.1016/j.ultsonch.2022.106161. Epub 2022 Sep 6.
10

引用本文的文献

1
In-Petri-dish acoustic vortex tweezers.
Lab Chip. 2025 Jul 1. doi: 10.1039/d4lc00799a.

本文引用的文献

1
A vibrating capillary for ultrasound rotation manipulation of zebrafish larvae.
Lab Chip. 2024 Feb 13;24(4):764-775. doi: 10.1039/d3lc00817g.
2
Aerosol jet printing of surface acoustic wave microfluidic devices.
Microsyst Nanoeng. 2024 Jan 1;10:2. doi: 10.1038/s41378-023-00606-z. eCollection 2024.
3
In-ear integrated sensor array for the continuous monitoring of brain activity and of lactate in sweat.
Nat Biomed Eng. 2023 Oct;7(10):1307-1320. doi: 10.1038/s41551-023-01095-1. Epub 2023 Sep 28.
4
In-vivo programmable acoustic manipulation of genetically engineered bacteria.
Nat Commun. 2023 Jun 6;14(1):3297. doi: 10.1038/s41467-023-38814-w.
5
Dual-Wave Acoustofluidic Centrifuge for Ultrafast Concentration of Nanoparticles and Extracellular Vesicles.
Small. 2023 Aug;19(35):e2300390. doi: 10.1002/smll.202300390. Epub 2023 Apr 28.
6
Acoustic streaming enabled moderate swimming exercise reduces neurodegeneration in .
Sci Adv. 2023 Feb 22;9(8):eadf5056. doi: 10.1126/sciadv.adf5056.
7
A wearable cardiac ultrasound imager.
Nature. 2023 Jan;613(7945):667-675. doi: 10.1038/s41586-022-05498-z. Epub 2023 Jan 25.
8
9
Wearable Bioelectronics for Chronic Wound Management.
Adv Funct Mater. 2022 Apr 25;32(17). doi: 10.1002/adfm.202111022. Epub 2021 Dec 26.
10
All-printed soft human-machine interface for robotic physicochemical sensing.
Sci Robot. 2022 Jun;7(67):eabn0495. doi: 10.1126/scirobotics.abn0495. Epub 2022 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验