Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
Biochemistry. 2012 Oct 30;51(43):8583-96. doi: 10.1021/bi3008214. Epub 2012 Oct 16.
Peptidyl prolyl cis-trans isomerization acts as an effective molecular timer that plays significant roles in biological and pathological processes. Enzymes such as Pin1 catalyze cis-trans isomerization, accelerating the otherwise slow isomerization rate into time scales relevant for cellular signaling. Here we have combined NMR line shape analysis, fluorescence spectroscopy, and isothermal titration calorimetry to determine the kinetic and thermodynamic parameters describing the trans-specific interaction between the binding domain of Pin1 (WW domain) and a key cis-trans molecular switch in the amyloid precursor protein cytoplasmic tail. A three-state model, in which the cis-trans isomerization equilibrium is coupled to the binding equilibrium through the trans isomer, was found to fit the data well. The trans isomer binds the WW domain with ∼22 μM affinity via very fast association (approaching the diffusion limit) and dissociation rates. The common structural and electrostatic characteristics of Pin1 substrates, which contain a phosphorylated serine/threonine-proline motif, suggest that very rapid binding kinetics are a general feature of Pin1 interactions with other substrates. The fast binding kinetics of the WW domain allows rapid response of Pin1 to the dynamic events of phosphorylation and dephosphorylation in the cell that alter the relative populations of diverse Pin1 substrates. Furthermore, our results also highlight the vastly different rates at which slow uncatalyzed cis-trans isomerization and fast isomer-specific binding events occur. These results, along with the experimental methods presented herein, should guide future experiments aimed at the thermodynamic and kinetic characterization of cis-trans molecular switches and isomer-specific interactions involved in various biological processes.
肽基脯氨酰顺反异构化充当有效的分子定时器,在生物和病理过程中发挥重要作用。Pin1 等酶催化顺反异构化,加速原本缓慢的异构化速率进入与细胞信号相关的时间尺度。在这里,我们结合 NMR 谱线形状分析、荧光光谱和等温滴定量热法,确定了描述 Pin1(WW 结构域)结合域与淀粉样前体蛋白细胞质尾部关键顺反分子开关之间的顺反异构特异性相互作用的动力学和热力学参数。发现三态模型能够很好地拟合数据,其中顺反异构平衡通过反式异构体与结合平衡偶联。反式异构体通过非常快的缔合(接近扩散极限)和离解速率,以约 22 μM 的亲和力结合 WW 结构域。Pin1 底物的常见结构和静电特征,其包含磷酸化丝氨酸/苏氨酸-脯氨酸基序,表明 Pin1 与其他底物的快速结合动力学是其与其他底物相互作用的一般特征。WW 结构域的快速结合动力学允许 Pin1 对细胞中磷酸化和去磷酸化的动态事件快速做出反应,从而改变不同 Pin1 底物的相对丰度。此外,我们的结果还突出了缓慢的未催化顺反异构化和快速的异构特异性结合事件发生的速度差异极大。这些结果以及本文中提出的实验方法,应该为未来旨在研究各种生物过程中顺反分子开关和异构特异性相互作用的热力学和动力学特征的实验提供指导。