Suppr超能文献

对 Pin1-WW 结构域与在 Thr668 位磷酸化的淀粉样前体蛋白胞质尾之间的异构体特异性相互作用进行完整的热力学和动力学特征分析。

Complete thermodynamic and kinetic characterization of the isomer-specific interaction between Pin1-WW domain and the amyloid precursor protein cytoplasmic tail phosphorylated at Thr668.

机构信息

Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.

出版信息

Biochemistry. 2012 Oct 30;51(43):8583-96. doi: 10.1021/bi3008214. Epub 2012 Oct 16.

Abstract

Peptidyl prolyl cis-trans isomerization acts as an effective molecular timer that plays significant roles in biological and pathological processes. Enzymes such as Pin1 catalyze cis-trans isomerization, accelerating the otherwise slow isomerization rate into time scales relevant for cellular signaling. Here we have combined NMR line shape analysis, fluorescence spectroscopy, and isothermal titration calorimetry to determine the kinetic and thermodynamic parameters describing the trans-specific interaction between the binding domain of Pin1 (WW domain) and a key cis-trans molecular switch in the amyloid precursor protein cytoplasmic tail. A three-state model, in which the cis-trans isomerization equilibrium is coupled to the binding equilibrium through the trans isomer, was found to fit the data well. The trans isomer binds the WW domain with ∼22 μM affinity via very fast association (approaching the diffusion limit) and dissociation rates. The common structural and electrostatic characteristics of Pin1 substrates, which contain a phosphorylated serine/threonine-proline motif, suggest that very rapid binding kinetics are a general feature of Pin1 interactions with other substrates. The fast binding kinetics of the WW domain allows rapid response of Pin1 to the dynamic events of phosphorylation and dephosphorylation in the cell that alter the relative populations of diverse Pin1 substrates. Furthermore, our results also highlight the vastly different rates at which slow uncatalyzed cis-trans isomerization and fast isomer-specific binding events occur. These results, along with the experimental methods presented herein, should guide future experiments aimed at the thermodynamic and kinetic characterization of cis-trans molecular switches and isomer-specific interactions involved in various biological processes.

摘要

肽基脯氨酰顺反异构化充当有效的分子定时器,在生物和病理过程中发挥重要作用。Pin1 等酶催化顺反异构化,加速原本缓慢的异构化速率进入与细胞信号相关的时间尺度。在这里,我们结合 NMR 谱线形状分析、荧光光谱和等温滴定量热法,确定了描述 Pin1(WW 结构域)结合域与淀粉样前体蛋白细胞质尾部关键顺反分子开关之间的顺反异构特异性相互作用的动力学和热力学参数。发现三态模型能够很好地拟合数据,其中顺反异构平衡通过反式异构体与结合平衡偶联。反式异构体通过非常快的缔合(接近扩散极限)和离解速率,以约 22 μM 的亲和力结合 WW 结构域。Pin1 底物的常见结构和静电特征,其包含磷酸化丝氨酸/苏氨酸-脯氨酸基序,表明 Pin1 与其他底物的快速结合动力学是其与其他底物相互作用的一般特征。WW 结构域的快速结合动力学允许 Pin1 对细胞中磷酸化和去磷酸化的动态事件快速做出反应,从而改变不同 Pin1 底物的相对丰度。此外,我们的结果还突出了缓慢的未催化顺反异构化和快速的异构特异性结合事件发生的速度差异极大。这些结果以及本文中提出的实验方法,应该为未来旨在研究各种生物过程中顺反分子开关和异构特异性相互作用的热力学和动力学特征的实验提供指导。

相似文献

2
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis.
J Biomol NMR. 2011 Sep;51(1-2):21-34. doi: 10.1007/s10858-011-9538-9. Epub 2011 Sep 27.
3
Phosphorylation-dependent prolyl isomerization: a novel signaling regulatory mechanism.
Cell Mol Life Sci. 1999 Nov 30;56(9-10):788-806. doi: 10.1007/s000180050026.
9
Modulating the Affinities of Phosphopeptides for the Human Pin1 WW Domain Using 4-Substituted Proline Derivatives.
Biochemistry. 2015 Oct 13;54(40):6186-94. doi: 10.1021/acs.biochem.5b00880. Epub 2015 Oct 1.
10
Functional conservation of phosphorylation-specific prolyl isomerases in plants.
J Biol Chem. 2001 Apr 27;276(17):13517-23. doi: 10.1074/jbc.M007006200. Epub 2000 Dec 15.

引用本文的文献

1
Experimental methods to study the structure and dynamics of intrinsically disordered regions in proteins.
Curr Res Struct Biol. 2024 Mar 21;7:100138. doi: 10.1016/j.crstbi.2024.100138. eCollection 2024.
2
Ligand-induced protein transition state stabilization switches the binding pathway from conformational selection to induced fit.
Proc Natl Acad Sci U S A. 2024 Apr 2;121(14):e2317747121. doi: 10.1073/pnas.2317747121. Epub 2024 Mar 25.
3
Bicelles Rich in both Sphingolipids and Cholesterol and Their Use in Studies of Membrane Proteins.
J Am Chem Soc. 2020 Jul 22;142(29):12715-12729. doi: 10.1021/jacs.0c04669. Epub 2020 Jul 8.
4
Mechanisms of Specific versus Nonspecific Interactions of Aggregation-Prone Inhibitors and Attenuators.
J Med Chem. 2019 May 23;62(10):5063-5079. doi: 10.1021/acs.jmedchem.9b00258. Epub 2019 May 10.
6
Networks of Dynamic Allostery Regulate Enzyme Function.
Structure. 2017 Feb 7;25(2):276-286. doi: 10.1016/j.str.2016.12.003. Epub 2017 Jan 12.
7
Neighboring phosphoSer-Pro motifs in the undefined domain of IRAK1 impart bivalent advantage for Pin1 binding.
FEBS J. 2016 Dec;283(24):4528-4548. doi: 10.1111/febs.13943. Epub 2016 Nov 20.
9
Pre-Anchoring of Pin1 to Unphosphorylated c-Myc in a Fuzzy Complex Regulates c-Myc Activity.
Structure. 2015 Dec 1;23(12):2267-2279. doi: 10.1016/j.str.2015.10.010. Epub 2015 Nov 19.
10
Mechanism of cAMP Partial Agonism in Protein Kinase G (PKG).
J Biol Chem. 2015 Nov 27;290(48):28631-41. doi: 10.1074/jbc.M115.685305. Epub 2015 Sep 14.

本文引用的文献

1
The prolyl-isomerase Pin1 activates the mitochondrial death program of p53.
Cell Death Differ. 2013 Feb;20(2):198-208. doi: 10.1038/cdd.2012.112. Epub 2012 Aug 31.
2
NMR line shapes and multi-state binding equilibria.
J Biomol NMR. 2012 Jul;53(3):257-70. doi: 10.1007/s10858-012-9636-3. Epub 2012 May 20.
4
kinITC: a new method for obtaining joint thermodynamic and kinetic data by isothermal titration calorimetry.
J Am Chem Soc. 2012 Jan 11;134(1):559-65. doi: 10.1021/ja209057d. Epub 2011 Dec 16.
5
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis.
J Biomol NMR. 2011 Sep;51(1-2):21-34. doi: 10.1007/s10858-011-9538-9. Epub 2011 Sep 27.
6
Slow dissociation of a charged ligand: analysis of the primary quinone Q(A) site of photosynthetic bacterial reaction centers.
J Am Chem Soc. 2011 Nov 2;133(43):17375-85. doi: 10.1021/ja205811f. Epub 2011 Oct 11.
7
Prolyl isomerase Pin1 as a molecular switch to determine the fate of phosphoproteins.
Trends Biochem Sci. 2011 Oct;36(10):501-14. doi: 10.1016/j.tibs.2011.07.001. Epub 2011 Aug 17.
8
Stereospecific gating of functional motions in Pin1.
Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12289-94. doi: 10.1073/pnas.1019382108. Epub 2011 Jul 11.
10
Structural biology: The twist in Crk signaling revealed.
Nat Chem Biol. 2011 Jan;7(1):5-6. doi: 10.1038/nchembio.504.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验