Suppr超能文献

活性基因在核孔复合体处的染色体间聚集。

Interchromosomal clustering of active genes at the nuclear pore complex.

机构信息

Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.

出版信息

Nucleus. 2012 Nov-Dec;3(6):487-92. doi: 10.4161/nucl.22663. Epub 2012 Oct 25.

Abstract

Genomes are spatially organized on many levels and the positioning of genes within the nucleus contributes to their proper expression. This positioning can also result in the clustering of genes with similar expression patterns, a phenomenon sometimes called "gene kissing." We have found that yeast genes are targeted to the nuclear periphery through interaction of the nuclear pore complex with small, cis-acting "DNA zip codes" in their promoters. Our recent study demonstrated that genes with the same zip codes cluster together at the nuclear periphery. The zip codes were necessary and sufficient to induce interchromosomal clustering. Finally, we identified a transcription factor (Put3) that binds to the GRS I zip code. Put3 binds to GRS I and is required for both GRS I-dependent positioning at the nuclear periphery and interchromosomal clustering of GRS I-targeted genes. We speculate that our findings might provide insight into other types of gene kissing, some of which also require cis-acting DNA sequences and trans-acting proteins.

摘要

基因组在多个层次上进行空间组织,基因在核内的定位有助于其正确表达。这种定位也可能导致具有相似表达模式的基因聚类,这种现象有时被称为“基因亲吻”。我们发现,酵母基因通过核孔复合体与启动子中较小的顺式作用“DNA 拉链码”相互作用,靶向核周。我们最近的研究表明,具有相同拉链码的基因在核周聚集在一起。拉链码是诱导染色体间聚类所必需和充分的。最后,我们鉴定出一种转录因子(Put3),它与 GRS I 拉链码结合。Put3 结合到 GRS I 上,并且对于 GRS I 依赖的核周定位和 GRS I 靶向基因的染色体间聚类都是必需的。我们推测,我们的发现可能为其他类型的基因亲吻提供一些线索,其中一些也需要顺式作用 DNA 序列和反式作用蛋白。

相似文献

1
Interchromosomal clustering of active genes at the nuclear pore complex.
Nucleus. 2012 Nov-Dec;3(6):487-92. doi: 10.4161/nucl.22663. Epub 2012 Oct 25.
2
Transcription factor binding to a DNA zip code controls interchromosomal clustering at the nuclear periphery.
Dev Cell. 2012 Jun 12;22(6):1234-46. doi: 10.1016/j.devcel.2012.03.012. Epub 2012 May 10.
3
Subnuclear positioning and interchromosomal clustering of the GAL1-10 locus are controlled by separable, interdependent mechanisms.
Mol Biol Cell. 2016 Oct 1;27(19):2980-93. doi: 10.1091/mbc.E16-03-0174. Epub 2016 Aug 3.
4
A role for DNA sequence in controlling the spatial organization of the genome.
Nucleus. 2010 Sep-Oct;1(5):402-6. doi: 10.4161/nucl.1.5.12637.
5
DNA zip codes control an ancient mechanism for gene targeting to the nuclear periphery.
Nat Cell Biol. 2010 Feb;12(2):111-8. doi: 10.1038/ncb2011. Epub 2010 Jan 24.
7
8
transcriptional memory leads to DNA zip code-dependent interchromosomal clustering.
Microb Cell. 2015 Dec;2(12):481-490. doi: 10.15698/mic2015.12.242. Epub 2015 Nov 13.
9
Transcription factors dynamically control the spatial organization of the yeast genome.
Nucleus. 2016 Jul 3;7(4):369-74. doi: 10.1080/19491034.2016.1212797. Epub 2016 Jul 21.

引用本文的文献

1
Nuclear basket proteins Mlp1 and Nup2 drive heat shock-induced 3D genome restructuring.
bioRxiv. 2025 Jan 2:2025.01.01.631024. doi: 10.1101/2025.01.01.631024.
3
In Pursuit of Distinctiveness: Transmembrane Nucleoporins and Their Disease Associations.
Front Oncol. 2021 Dec 14;11:784319. doi: 10.3389/fonc.2021.784319. eCollection 2021.
4
Recruitment of an Activated Gene to the Yeast Nuclear Pore Complex Requires Sumoylation.
Front Genet. 2020 Mar 6;11:174. doi: 10.3389/fgene.2020.00174. eCollection 2020.
5
The liquid nucleome - phase transitions in the nucleus at a glance.
J Cell Sci. 2019 Nov 21;132(22):jcs235093. doi: 10.1242/jcs.235093.
6
Nuclear pores in genome architecture and enhancer function.
Curr Opin Cell Biol. 2019 Jun;58:126-133. doi: 10.1016/j.ceb.2019.04.001. Epub 2019 May 4.
7
The Rabl configuration limits topological entanglement of chromosomes in budding yeast.
Sci Rep. 2019 May 1;9(1):6795. doi: 10.1038/s41598-019-42967-4.
8
Nuclear Pores Promote Lethal Prostate Cancer by Increasing POM121-Driven E2F1, MYC, and AR Nuclear Import.
Cell. 2018 Aug 23;174(5):1200-1215.e20. doi: 10.1016/j.cell.2018.07.015. Epub 2018 Aug 9.
9
Groupthink: chromosomal clustering during transcriptional memory.
Microb Cell. 2015 Nov 26;2(12):454-457. doi: 10.15698/mic2015.12.244.
10
Sumoylation and transcription regulation at nuclear pores.
Chromosoma. 2015 Mar;124(1):45-56. doi: 10.1007/s00412-014-0481-x. Epub 2014 Aug 30.

本文引用的文献

1
DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina.
Cell. 2012 Jun 22;149(7):1474-87. doi: 10.1016/j.cell.2012.04.035.
3
Transcription factor binding to a DNA zip code controls interchromosomal clustering at the nuclear periphery.
Dev Cell. 2012 Jun 12;22(6):1234-46. doi: 10.1016/j.devcel.2012.03.012. Epub 2012 May 10.
4
A negative feedback loop at the nuclear periphery regulates GAL gene expression.
Mol Biol Cell. 2012 Apr;23(7):1367-75. doi: 10.1091/mbc.E11-06-0547. Epub 2012 Feb 9.
5
Transcription factories and nuclear organization of the genome.
Cold Spring Harb Symp Quant Biol. 2010;75:501-6. doi: 10.1101/sqb.2010.75.046. Epub 2011 Apr 5.
6
Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila.
Cell. 2011 Jan 21;144(2):214-26. doi: 10.1016/j.cell.2010.12.026.
7
Nucleation of nuclear bodies by RNA.
Nat Cell Biol. 2011 Feb;13(2):167-73. doi: 10.1038/ncb2157. Epub 2011 Jan 16.
8
Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs.
Nat Cell Biol. 2011 Jan;13(1):95-101. doi: 10.1038/ncb2140. Epub 2010 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验