Suppr超能文献

RIP-chip 富集分析。

RIP-chip enrichment analysis.

机构信息

Institut für Informatik, Ludwig-Maximilians-Universität München, 80333 München, Germany.

出版信息

Bioinformatics. 2013 Jan 1;29(1):77-83. doi: 10.1093/bioinformatics/bts631. Epub 2012 Oct 26.

Abstract

MOTIVATION

RIP-chip is a high-throughput method to identify mRNAs that are targeted by RNA-binding proteins. The protein of interest is immunoprecipitated, and the identity and relative amount of mRNA associated with it is measured on microarrays. Even if a variety of methods is available to analyse microarray data, e.g. to detect differentially regulated genes, the additional experimental steps in RIP-chip require specialized methods. Here, we focus on two aspects of RIP-chip data: First, the efficiency of the immunoprecipitation step performed in the RIP-chip protocol varies in between different experiments introducing bias not existing in standard microarray experiments. This requires an additional normalization step to compare different samples and even technical replicates. Second, in contrast to standard differential gene expression experiments, the distribution of measurements is not normal. We exploit this fact to define a set of biologically relevant genes in a statistically meaningful way.

RESULTS

Here, we propose two methods to analyse RIP-chip data: We model the measurement distribution as a gaussian mixture distribution, which allows us to compute false discovery rates (FDRs) for any cut-off. Thus, cut-offs can be chosen for any desired FDR. Furthermore, we use principal component analysis to determine the normalization factors necessary to remove immunoprecipitation bias. Both methods are evaluated on a large RIP-chip dataset measuring targets of Ago2, the major component of the microRNA guided RNA-induced silencing complex (RISC). Using published HITS-CLIP experiments performed with the same cell line as used for RIP-chip, we show that the mixture modelling approach is a necessary step to remove background, which computed FDRs are valid, and that the additional normalization is a necessary step to make experiments comparable.

AVAILABILITY

An R implementation of REA is available on the project website (http://www.bio.ifi.lmu.de/REA) and as supplementary data file.

摘要

动机

RIP-chip 是一种高通量的方法,用于鉴定 RNA 结合蛋白靶向的 mRNA。感兴趣的蛋白质被免疫沉淀,与其相关的 mRNA 的身份和相对量在微阵列上进行测量。即使有多种方法可用于分析微阵列数据,例如检测差异调节基因,RIP-chip 中的额外实验步骤也需要专门的方法。在这里,我们关注 RIP-chip 数据的两个方面:首先,RIP-chip 协议中免疫沉淀步骤的效率在不同实验之间变化,引入了标准微阵列实验中不存在的偏差。这需要额外的标准化步骤来比较不同的样本甚至技术重复。其次,与标准差异基因表达实验相比,测量的分布不是正态的。我们利用这一事实以有意义的方式定义一组生物学上相关的基因。

结果

在这里,我们提出了两种分析 RIP-chip 数据的方法:我们将测量分布建模为高斯混合分布,这使我们能够为任何截止值计算错误发现率 (FDR)。因此,可以为任何所需的 FDR 选择截止值。此外,我们使用主成分分析来确定去除免疫沉淀偏差所需的标准化因子。这两种方法都在一个大规模的 RIP-chip 数据集上进行了评估,该数据集测量了 Ago2 的靶标,Ago2 是 microRNA 指导的 RNA 诱导沉默复合物 (RISC) 的主要成分。使用与用于 RIP-chip 的相同细胞系进行的已发表的 HITS-CLIP 实验,我们表明混合模型方法是去除背景的必要步骤,计算出的 FDR 是有效的,并且额外的标准化是使实验具有可比性的必要步骤。

可用性

REA 的 R 实现可在项目网站(http://www.bio.ifi.lmu.de/REA)和补充数据文件中获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验