Department of Microencapsulation and Nanomaterials, Southwest Research Institute, San Antonio, Texas, USA.
Tissue Eng Part C Methods. 2013 Jul;19(7):487-96. doi: 10.1089/ten.TEC.2012.0452. Epub 2013 Jan 4.
Prevalent three-dimensional scaffolds for bone tissue engineering are mineralized collagen-hydroxyapatite (Col/HA) composites. Conventional mineralization techniques are either to coat collagen scaffold surfaces with minerals or to simply mix collagen and mineral nanoparticles together. These conventional in vitro collagen mineralization methods are different from the in vivo bone formation process and often result in scaffolds that are not suitable for bone tissue engineering. In this study, a unique perfusion-flow (i.e., dynamic) in conjunction with a previously described polymer-induced liquid-precursor (PILP) method was used to fabricate a porous Col/HA composite. The dynamic flow emulated the physiological extracellular fluid flow containing the mineralization ions, while the PILP method facilitated the deposition of the HA crystals within the collagen fibrils (i.e., intrafibrillar mineralization). By utilizing a dynamic PILP technique to mimic the in vivo bone formation process, the resultant Col/HA composite has a similar structure and compositions like human trabecular bone. A comparison of the dynamic and static mineralization methods revealed that the novel dynamic technique facilitates more efficient and homogenous mineral deposition throughout the Col/HA composite. The dynamic intrafibrillar mineralization method generated stiff Col/HA composites with excellent surface property for cell attachment and growth. The human mesenchymal stem cells cultured on the Col/HA composites quickly remodeled the scaffolds and resulted in constructs with an extensive cell-derived extracellular matrix network.
用于骨组织工程的流行三维支架是矿化胶原-羟基磷灰石(Col/HA)复合材料。传统的矿化技术要么是在胶原支架表面涂覆矿物质,要么是简单地将胶原和矿物质纳米颗粒混合在一起。这些传统的体外胶原矿化方法与体内骨形成过程不同,通常导致不适合骨组织工程的支架。在这项研究中,使用了一种独特的灌注流(即动态)与先前描述的聚合物诱导的液体前体(PILP)方法相结合,来制造多孔的 Col/HA 复合材料。动态流模拟了含有矿化离子的生理细胞外液流动,而 PILP 方法促进了 HA 晶体在胶原原纤维内的沉积(即原纤维内矿化)。通过利用动态 PILP 技术来模拟体内骨形成过程,所得的 Col/HA 复合材料具有类似于人小梁骨的相似结构和组成。对动态和静态矿化方法的比较表明,新颖的动态技术有利于在整个 Col/HA 复合材料中更有效地进行均匀的矿物质沉积。动态原纤维内矿化方法生成了具有良好表面性质的刚性 Col/HA 复合材料,有利于细胞附着和生长。在 Col/HA 复合材料上培养的人骨髓间充质干细胞迅速重塑支架,并形成具有广泛细胞衍生细胞外基质网络的构建体。