Suppr超能文献

基于 RNA-seq 的转录分辨率下基因调控的差异分析。

Differential analysis of gene regulation at transcript resolution with RNA-seq.

机构信息

Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA.

出版信息

Nat Biotechnol. 2013 Jan;31(1):46-53. doi: 10.1038/nbt.2450. Epub 2012 Dec 9.

Abstract

Differential analysis of gene and transcript expression using high-throughput RNA sequencing (RNA-seq) is complicated by several sources of measurement variability and poses numerous statistical challenges. We present Cuffdiff 2, an algorithm that estimates expression at transcript-level resolution and controls for variability evident across replicate libraries. Cuffdiff 2 robustly identifies differentially expressed transcripts and genes and reveals differential splicing and promoter-preference changes. We demonstrate the accuracy of our approach through differential analysis of lung fibroblasts in response to loss of the developmental transcription factor HOXA1, which we show is required for lung fibroblast and HeLa cell cycle progression. Loss of HOXA1 results in significant expression level changes in thousands of individual transcripts, along with isoform switching events in key regulators of the cell cycle. Cuffdiff 2 performs robust differential analysis in RNA-seq experiments at transcript resolution, revealing a layer of regulation not readily observable with other high-throughput technologies.

摘要

使用高通量 RNA 测序(RNA-seq)进行基因和转录本表达的差异分析受到多种测量变异源的影响,并带来了许多统计挑战。我们提出了 Cuffdiff 2,这是一种算法,可以在转录本分辨率上估计表达水平,并控制在重复文库中明显存在的变异性。Cuffdiff 2 可以稳健地识别差异表达的转录本和基因,并揭示差异剪接和启动子偏好变化。我们通过对发育转录因子 HOXA1 缺失的肺成纤维细胞的差异分析证明了我们方法的准确性,我们表明 HOXA1 缺失是肺成纤维细胞和 HeLa 细胞周期进展所必需的。HOXA1 的缺失导致数千个单独转录本的表达水平发生显著变化,同时细胞周期关键调节因子的同工型转换事件也发生了。Cuffdiff 2 在 RNA-seq 实验中以转录本分辨率进行稳健的差异分析,揭示了一层不易用其他高通量技术观察到的调控。

相似文献

1
Differential analysis of gene regulation at transcript resolution with RNA-seq.
Nat Biotechnol. 2013 Jan;31(1):46-53. doi: 10.1038/nbt.2450. Epub 2012 Dec 9.
2
iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data.
BMC Bioinformatics. 2018 Dec 19;19(1):534. doi: 10.1186/s12859-018-2486-6.
3
Identifying differential alternative splicing events from RNA sequencing data using RNASeq-MATS.
Methods Mol Biol. 2013;1038:171-9. doi: 10.1007/978-1-62703-514-9_10.
4
Importance of Transcript Variants in Transcriptome Analyses.
Cells. 2024 Sep 8;13(17):1502. doi: 10.3390/cells13171502.
6
A Workflow Guide to RNA-seq Analysis of Chaperone Function and Beyond.
Methods Mol Biol. 2018;1709:233-252. doi: 10.1007/978-1-4939-7477-1_18.
7
rSeqDiff: detecting differential isoform expression from RNA-Seq data using hierarchical likelihood ratio test.
PLoS One. 2013 Nov 18;8(11):e79448. doi: 10.1371/journal.pone.0079448. eCollection 2013.
9
Using Synthetic Mouse Spike-In Transcripts to Evaluate RNA-Seq Analysis Tools.
PLoS One. 2016 Apr 21;11(4):e0153782. doi: 10.1371/journal.pone.0153782. eCollection 2016.

引用本文的文献

2
SFB flagellin mediates cell adhesion, endocytosis and immune regulation in germ-free mice.
Front Immunol. 2025 Aug 20;16:1624092. doi: 10.3389/fimmu.2025.1624092. eCollection 2025.
4
Transcriptomic Plasticity in the Small Hive Beetle () Under Heat Stress.
Insects. 2025 Aug 21;16(8):868. doi: 10.3390/insects16080868.
5
Metabolic reprogramming and gut microbiota ecology drive divergent infection outcomes in .
bioRxiv. 2025 Aug 14:2025.08.13.670040. doi: 10.1101/2025.08.13.670040.
8
Morphological map of under- and overexpression of genes in human cells.
Nat Methods. 2025 Aug;22(8):1742-1752. doi: 10.1038/s41592-025-02753-9. Epub 2025 Aug 7.
10
Parvovirus B19 NS1 protein induces synovitis mimicking rheumatoid arthritis.
Sci Rep. 2025 Aug 6;15(1):28679. doi: 10.1038/s41598-025-11900-3.

本文引用的文献

1
Landscape of transcription in human cells.
Nature. 2012 Sep 6;489(7414):101-8. doi: 10.1038/nature11233.
2
Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins.
Cell. 2012 Aug 17;150(4):710-24. doi: 10.1016/j.cell.2012.06.041.
3
Detecting differential usage of exons from RNA-seq data.
Genome Res. 2012 Oct;22(10):2008-17. doi: 10.1101/gr.133744.111. Epub 2012 Jun 21.
4
Identifying differentially expressed transcripts from RNA-seq data with biological variation.
Bioinformatics. 2012 Jul 1;28(13):1721-8. doi: 10.1093/bioinformatics/bts260. Epub 2012 May 3.
5
Cdc14b regulates mammalian RNA polymerase II and represses cell cycle transcription.
Sci Rep. 2011;1:189. doi: 10.1038/srep00189. Epub 2011 Dec 12.
6
Diverse functional networks of Tbx3 in development and disease.
Wiley Interdiscip Rev Syst Biol Med. 2012 May-Jun;4(3):273-83. doi: 10.1002/wsbm.1162. Epub 2012 Feb 14.
7
Alternative splicing of RNA triplets is often regulated and accelerates proteome evolution.
PLoS Biol. 2012 Jan;10(1):e1001229. doi: 10.1371/journal.pbio.1001229. Epub 2012 Jan 3.
8
Differential expression in RNA-seq: a matter of depth.
Genome Res. 2011 Dec;21(12):2213-23. doi: 10.1101/gr.124321.111. Epub 2011 Sep 8.
9
Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses.
Genes Dev. 2011 Sep 15;25(18):1915-27. doi: 10.1101/gad.17446611. Epub 2011 Sep 2.
10
Estimation of alternative splicing isoform frequencies from RNA-Seq data.
Algorithms Mol Biol. 2011 Apr 19;6(1):9. doi: 10.1186/1748-7188-6-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验