Suppr超能文献

锌依赖的裂殖酵母 Adh1 反义转录本的调控。

Zinc-dependent regulation of the Adh1 antisense transcript in fission yeast.

机构信息

Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA.

出版信息

J Biol Chem. 2013 Jan 11;288(2):759-69. doi: 10.1074/jbc.M112.406165. Epub 2012 Dec 5.

Abstract

In yeast, Adh1 (alcohol dehydrogenase 1) is an abundant zinc-binding protein that is required for the conversion of acetaldehyde to ethanol. Through transcriptome profiling of the Schizosaccharomyces pombe genome, we identified a natural antisense transcript at the adh1 locus that is induced in response to zinc limitation. This antisense transcript (adh1AS) shows a reciprocal expression pattern to that of the adh1 mRNA partner. In this study, we show that increased expression of the adh1AS transcript in zinc-limited cells is necessary for the repression of adh1 gene expression and that the increased level of the adh1AS transcript in zinc-limited cells is a result of two mechanisms. At the transcriptional level, the adh1AS transcript is expressed at a high level in zinc-limited cells. In addition to this transcriptional control, adh1AS transcripts preferentially accumulate in zinc-limited cells when the adh1AS transcript is expressed from a constitutive promoter. This secondary mechanism requires the simultaneous expression of adh1. Our studies reveal how multiple mechanisms can synergistically control the ratio of sense to antisense transcripts and highlight a novel mechanism by which adh1 gene expression can be controlled by cellular zinc availability.

摘要

在酵母中,Adh1(乙醇脱氢酶 1)是一种丰富的锌结合蛋白,对于将乙醛转化为乙醇是必需的。通过对裂殖酵母基因组的转录组分析,我们在 adh1 基因座上鉴定到一个天然反义转录本,它响应锌限制而被诱导。这种反义转录本(adh1AS)与 adh1 mRNA 伙伴的表达模式呈反向。在这项研究中,我们表明,在缺锌细胞中增加 adh1AS 转录本的表达对于抑制 adh1 基因表达是必要的,并且在缺锌细胞中增加的 adh1AS 转录本水平是两个机制的结果。在转录水平上,adh1AS 转录本在缺锌细胞中以高水平表达。除了这种转录控制之外,当 adh1AS 转录本从组成型启动子表达时,adh1AS 转录本优先在缺锌细胞中积累。这种二级机制需要 adh1 的同时表达。我们的研究揭示了多种机制如何协同控制有意义和反义转录本的比例,并强调了一种新的机制,即细胞中锌的可用性可以控制 adh1 基因表达。

相似文献

1
Zinc-dependent regulation of the Adh1 antisense transcript in fission yeast.
J Biol Chem. 2013 Jan 11;288(2):759-69. doi: 10.1074/jbc.M112.406165. Epub 2012 Dec 5.
2
Repression of ADH1 and ADH3 during zinc deficiency by Zap1-induced intergenic RNA transcripts.
EMBO J. 2006 Dec 13;25(24):5726-34. doi: 10.1038/sj.emboj.7601453. Epub 2006 Nov 30.
4
Construction and characterization of a zinc-inducible gene expression vector in fission yeast.
Yeast. 2021 Apr;38(4):251-261. doi: 10.1002/yea.3539. Epub 2020 Dec 4.
5
An antisense RNA-mediated mechanism eliminates a meiosis-specific copper-regulated transcript in mitotic cells.
J Biol Chem. 2015 Sep 11;290(37):22622-37. doi: 10.1074/jbc.M115.674556. Epub 2015 Jul 30.
7
Zinc finger protein Loz1 is required for zinc-responsive regulation of gene expression in fission yeast.
Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):15371-6. doi: 10.1073/pnas.1300853110. Epub 2013 Sep 3.
8
Molecular analysis of an NAD-dependent alcohol dehydrogenase from the zygomycete Mucor circinelloides.
Mol Genet Genomics. 2005 Nov;274(4):354-63. doi: 10.1007/s00438-005-0025-4. Epub 2005 Sep 23.
9
Structure and regulation of the Candida albicans ADH1 gene encoding an immunogenic alcohol dehydrogenase.
Yeast. 1996 Feb;12(2):115-27. doi: 10.1002/(sici)1097-0061(199602)12:2<115::aid-yea889>3.0.co;2-e.
10
RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe.
Biochem Biophys Res Commun. 2014 Feb 7;444(2):254-9. doi: 10.1016/j.bbrc.2014.01.057. Epub 2014 Jan 23.

引用本文的文献

1
Regulation of sod1 mRNA and protein abundance by zinc in fission yeast is dependent on the CCR4-NOT complex.
J Biol Chem. 2025 Feb;301(2):108156. doi: 10.1016/j.jbc.2025.108156. Epub 2025 Jan 4.
3
Zinc homeostasis in Schizosaccharomyces pombe.
Arch Microbiol. 2023 Mar 21;205(4):126. doi: 10.1007/s00203-023-03473-4.
4
Transcription factors and transporters in zinc homeostasis: lessons learned from fungi.
Crit Rev Biochem Mol Biol. 2020 Feb;55(1):88-110. doi: 10.1080/10409238.2020.1742092. Epub 2020 Mar 19.
5
Zinc homeostasis in the secretory pathway in yeast.
Curr Opin Chem Biol. 2020 Apr;55:145-150. doi: 10.1016/j.cbpa.2020.01.011. Epub 2020 Feb 27.
7
Zinc-dependent activation of the Pho8 alkaline phosphatase in .
J Biol Chem. 2019 Aug 16;294(33):12392-12404. doi: 10.1074/jbc.RA119.007371. Epub 2019 Jun 25.
8
The cellular economy of the Saccharomyces cerevisiae zinc proteome.
Metallomics. 2018 Dec 12;10(12):1755-1776. doi: 10.1039/c8mt00269j.
9
Long noncoding RNA repertoire and targeting by nuclear exosome, cytoplasmic exonuclease, and RNAi in fission yeast.
RNA. 2018 Sep;24(9):1195-1213. doi: 10.1261/rna.065524.118. Epub 2018 Jun 18.
10
Zinc transporters belonging to the Cation Diffusion Facilitator (CDF) family have complementary roles in transporting zinc out of the cytosol.
PLoS Genet. 2018 Mar 12;14(3):e1007262. doi: 10.1371/journal.pgen.1007262. eCollection 2018 Mar.

本文引用的文献

2
The taste of heavy metals: gene regulation by MTF-1.
Biochim Biophys Acta. 2012 Sep;1823(9):1416-25. doi: 10.1016/j.bbamcr.2012.01.005. Epub 2012 Jan 20.
4
Hammering out details: regulating metal levels in eukaryotes.
Trends Biochem Sci. 2011 Oct;36(10):524-31. doi: 10.1016/j.tibs.2011.07.002. Epub 2011 Aug 16.
5
Antisense expression increases gene expression variability and locus interdependency.
Mol Syst Biol. 2011 Feb 15;7:468. doi: 10.1038/msb.2011.1.
6
The prevalence and regulation of antisense transcripts in Schizosaccharomyces pombe.
PLoS One. 2010 Dec 20;5(12):e15271. doi: 10.1371/journal.pone.0015271.
7
Altered antisense-to-sense transcript ratios in breast cancer.
Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2820-4. doi: 10.1073/pnas.1010559107. Epub 2010 Nov 22.
8
RNAi screen indicates widespread biological function for human natural antisense transcripts.
PLoS One. 2010 Oct 4;5(10):e13177. doi: 10.1371/journal.pone.0013177.
10
What are natural antisense transcripts good for?
Biochem Soc Trans. 2010 Aug;38(4):1144-9. doi: 10.1042/BST0381144.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验