Suppr超能文献

重编程体细胞为诱导多能干细胞的分子路线图。

A molecular roadmap of reprogramming somatic cells into iPS cells.

机构信息

Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, 185 Cambridge Street, Boston, MA 02114, USA.

出版信息

Cell. 2012 Dec 21;151(7):1617-32. doi: 10.1016/j.cell.2012.11.039.

Abstract

Factor-induced reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) is inefficient, complicating mechanistic studies. Here, we examined defined intermediate cell populations poised to becoming iPSCs by genome-wide analyses. We show that induced pluripotency elicits two transcriptional waves, which are driven by c-Myc/Klf4 (first wave) and Oct4/Sox2/Klf4 (second wave). Cells that become refractory to reprogramming activate the first but fail to initiate the second transcriptional wave and can be rescued by elevated expression of all four factors. The establishment of bivalent domains occurs gradually after the first wave, whereas changes in DNA methylation take place after the second wave when cells acquire stable pluripotency. This integrative analysis allowed us to identify genes that act as roadblocks during reprogramming and surface markers that further enrich for cells prone to forming iPSCs. Collectively, our data offer new mechanistic insights into the nature and sequence of molecular events inherent to cellular reprogramming.

摘要

体细胞经诱导重编程为诱导多能干细胞(iPSCs)的效率较低,这使得机制研究变得复杂。在这里,我们通过全基因组分析检查了处于成为 iPSCs 状态的定义明确的中间细胞群体。我们表明,诱导多能性引发了两个转录波,这两个转录波由 c-Myc/Klf4(第一波)和 Oct4/Sox2/Klf4(第二波)驱动。对重新编程产生抗性的细胞会激活第一波,但无法启动第二波转录,并且可以通过提高这四个因子的表达来挽救。在第一波之后,双价域的建立逐渐发生,而在第二波之后,当细胞获得稳定的多能性时,DNA 甲基化才会发生变化。这种综合分析使我们能够鉴定在重编程过程中起阻碍作用的基因,以及进一步富集易于形成 iPSCs 的细胞的表面标志物。总的来说,我们的数据为细胞重编程所固有的分子事件的本质和顺序提供了新的机制见解。

相似文献

1
A molecular roadmap of reprogramming somatic cells into iPS cells.
Cell. 2012 Dec 21;151(7):1617-32. doi: 10.1016/j.cell.2012.11.039.
2
Intermediate Standstill Clones Trapped in the Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells.
Cell Reprogram. 2020 Apr;22(2):99-105. doi: 10.1089/cell.2019.0083. Epub 2020 Mar 17.
3
Transient and Permanent Reconfiguration of Chromatin and Transcription Factor Occupancy Drive Reprogramming.
Cell Stem Cell. 2017 Dec 7;21(6):834-845.e6. doi: 10.1016/j.stem.2017.11.007.
4
Sirt6 regulates efficiency of mouse somatic reprogramming and maintenance of pluripotency.
Stem Cell Res Ther. 2019 Jan 10;10(1):9. doi: 10.1186/s13287-018-1109-5.
5
Transcriptional and epigenetic mechanisms of cellular reprogramming to induced pluripotency.
Epigenomics. 2016 Aug;8(8):1131-49. doi: 10.2217/epi-2016-0032. Epub 2016 Jul 15.
6
The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells.
Cell Stem Cell. 2010 Feb 5;6(2):167-74. doi: 10.1016/j.stem.2009.12.009. Epub 2010 Jan 21.
8
NKX3-1 is required for induced pluripotent stem cell reprogramming and can replace OCT4 in mouse and human iPSC induction.
Nat Cell Biol. 2018 Aug;20(8):900-908. doi: 10.1038/s41556-018-0136-x. Epub 2018 Jul 16.
9
Excluding Oct4 from Yamanaka Cocktail Unleashes the Developmental Potential of iPSCs.
Cell Stem Cell. 2019 Dec 5;25(6):737-753.e4. doi: 10.1016/j.stem.2019.10.002. Epub 2019 Nov 7.
10
The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming.
Nature. 2012 Aug 16;488(7411):409-13. doi: 10.1038/nature11272.

引用本文的文献

1
Gene dosage and protein valency impact phase separation and fungal cell fate.
PLoS Genet. 2025 Aug 8;21(8):e1011810. doi: 10.1371/journal.pgen.1011810. eCollection 2025 Aug.
2
Sceptic: pseudotime analysis for time-series single-cell sequencing and imaging data.
Genome Biol. 2025 Jul 17;26(1):209. doi: 10.1186/s13059-025-03679-3.
3
Refate identifies chemical compounds to target trans-regulatory networks for cellular conversion.
bioRxiv. 2025 Jul 12:2025.07.09.664003. doi: 10.1101/2025.07.09.664003.
4
In Vivo Reprogramming Highlights Epigenetic Regulation That Shapes Cancer Hallmarks.
Cancer Sci. 2025 Jul;116(7):1807-1814. doi: 10.1111/cas.70067. Epub 2025 Apr 21.
5
Cell reprogramming: methods, mechanisms and applications.
Cell Regen. 2025 Mar 27;14(1):12. doi: 10.1186/s13619-025-00229-x.
6
The role of KLF4 in human primordial germ cell development.
Open Biol. 2025 Jan;15(1):240214. doi: 10.1098/rsob.240214. Epub 2025 Jan 22.
8
Reconstitution of pluripotency from mouse fibroblast through Sall4 overexpression.
Nat Commun. 2024 Dec 30;15(1):10787. doi: 10.1038/s41467-024-54924-5.
10
An Unbiased Approach to Identifying Cellular Reprogramming-Inducible Enhancers.
Int J Mol Sci. 2024 Dec 6;25(23):13128. doi: 10.3390/ijms252313128.

本文引用的文献

1
Highly coordinated proteome dynamics during reprogramming of somatic cells to pluripotency.
Cell Rep. 2012 Dec 27;2(6):1579-92. doi: 10.1016/j.celrep.2012.10.014.
2
Pivots of pluripotency: the roles of non-coding RNA in regulating embryonic and induced pluripotent stem cells.
Biochim Biophys Acta. 2013 Feb;1830(2):2385-94. doi: 10.1016/j.bbagen.2012.10.014. Epub 2012 Oct 24.
3
Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system.
Cell Stem Cell. 2012 Dec 7;11(6):783-98. doi: 10.1016/j.stem.2012.09.011. Epub 2012 Oct 25.
5
Functions of DNA methylation: islands, start sites, gene bodies and beyond.
Nat Rev Genet. 2012 May 29;13(7):484-92. doi: 10.1038/nrg3230.
7
Chromatin connections to pluripotency and cellular reprogramming.
Cell. 2011 Jun 10;145(6):835-50. doi: 10.1016/j.cell.2011.05.019.
8
From microRNAs to targets: pathway discovery in cell fate transitions.
Curr Opin Genet Dev. 2011 Aug;21(4):498-503. doi: 10.1016/j.gde.2011.04.011. Epub 2011 Jun 1.
9
Harnessing the potential of induced pluripotent stem cells for regenerative medicine.
Nat Cell Biol. 2011 May;13(5):497-505. doi: 10.1038/ncb0511-497.
10
Reprogramming factor expression initiates widespread targeted chromatin remodeling.
Cell Stem Cell. 2011 Jan 7;8(1):96-105. doi: 10.1016/j.stem.2010.12.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验