Suppr超能文献

一种用于分布式隐私保护支持向量机学习的协作框架。

A collaborative framework for Distributed Privacy-Preserving Support Vector Machine learning.

作者信息

Que Jialan, Jiang Xiaoqian, Ohno-Machado Lucila

机构信息

University of California, La Jolla, CA, USA.

出版信息

AMIA Annu Symp Proc. 2012;2012:1350-9. Epub 2012 Nov 3.

Abstract

A Support Vector Machine (SVM) is a popular tool for decision support. The traditional way to build an SVM model is to estimate parameters based on a centralized repository of data. However, in the field of biomedicine, patient data are sometimes stored in local repositories or institutions where they were collected, and may not be easily shared due to privacy concerns. This creates a substantial barrier for researchers to effectively learn from the distributed data using machine learning tools like SVMs. To overcome this difficulty and promote efficient information exchange without sharing sensitive raw data, we developed a Distributed Privacy Preserving Support Vector Machine (DPP-SVM). The DPP-SVM enables privacy-preserving collaborative learning, in which a trusted server integrates "privacy-insensitive" intermediary results. The globally learned model is guaranteed to be exactly the same as learned from combined data. We also provide a free web-service (http://privacy.ucsd.edu:8080/ppsvm/) for multiple participants to collaborate and complete the SVM-learning task in an efficient and privacy-preserving manner.

摘要

支持向量机(SVM)是一种常用的决策支持工具。构建SVM模型的传统方法是基于集中式数据存储库来估计参数。然而,在生物医学领域,患者数据有时存储在收集数据的本地存储库或机构中,由于隐私问题,这些数据可能不易共享。这给研究人员使用诸如支持向量机之类的机器学习工具从分布式数据中有效学习带来了巨大障碍。为了克服这一困难并在不共享敏感原始数据的情况下促进高效的信息交换,我们开发了一种分布式隐私保护支持向量机(DPP-SVM)。DPP-SVM支持隐私保护协作学习,其中一个可信服务器整合“隐私不敏感”的中间结果。全局学习到的模型保证与从组合数据中学习到的模型完全相同。我们还提供了一个免费的网络服务(http://privacy.ucsd.edu:8080/ppsvm/),供多个参与者以高效且保护隐私的方式进行协作并完成SVM学习任务。

相似文献

2
WebGLORE: a web service for Grid LOgistic REgression.
Bioinformatics. 2013 Dec 15;29(24):3238-40. doi: 10.1093/bioinformatics/btt559. Epub 2013 Sep 25.
3
The FeatureCloud Platform for Federated Learning in Biomedicine: Unified Approach.
J Med Internet Res. 2023 Jul 12;25:e42621. doi: 10.2196/42621.
4
Fair compute loads enabled by blockchain: sharing models by alternating client and server roles.
J Am Med Inform Assoc. 2019 May 1;26(5):392-403. doi: 10.1093/jamia/ocy180.
5
Privacy-Preserving Multi-Class Support Vector Machine Model on Medical Diagnosis.
IEEE J Biomed Health Inform. 2022 Jul;26(7):3342-3353. doi: 10.1109/JBHI.2022.3157592. Epub 2022 Jul 1.
7
Privacy preserving distributed learning classifiers - Sequential learning with small sets of data.
Comput Biol Med. 2021 Sep;136:104716. doi: 10.1016/j.compbiomed.2021.104716. Epub 2021 Jul 31.
8
Privacy preserving RBF kernel support vector machine.
Biomed Res Int. 2014;2014:827371. doi: 10.1155/2014/827371. Epub 2014 Jun 12.
9
Privacy-preserving Collaborative Training for Medical Image Analysis Based on Multi-Blockchain.
Comb Chem High Throughput Screen. 2021;24(7):933-946. doi: 10.2174/1386207323666201022110616.
10
Decentralised, collaborative, and privacy-preserving machine learning for multi-hospital data.
EBioMedicine. 2024 Mar;101:105006. doi: 10.1016/j.ebiom.2024.105006. Epub 2024 Feb 19.

引用本文的文献

1
VERTICOX: Vertically Distributed Cox Proportional Hazards Model Using the Alternating Direction Method of Multipliers.
IEEE Trans Knowl Data Eng. 2022 Feb;34(2):996-1010. doi: 10.1109/tkde.2020.2989301. Epub 2020 Apr 22.
2
Privacy Protection and Secondary Use of Health Data: Strategies and Methods.
Biomed Res Int. 2021 Oct 7;2021:6967166. doi: 10.1155/2021/6967166. eCollection 2021.
3
A Scalable Privacy-preserving Data Generation Methodology for Exploratory Analysis.
AMIA Annu Symp Proc. 2018 Apr 16;2017:1695-1704. eCollection 2017.
4
5
pSCANNER: patient-centered Scalable National Network for Effectiveness Research.
J Am Med Inform Assoc. 2014 Jul-Aug;21(4):621-6. doi: 10.1136/amiajnl-2014-002751. Epub 2014 Apr 29.
6
EXpectation Propagation LOgistic REgRession (EXPLORER): distributed privacy-preserving online model learning.
J Biomed Inform. 2013 Jun;46(3):480-96. doi: 10.1016/j.jbi.2013.03.008. Epub 2013 Apr 4.

本文引用的文献

1
Grid Binary LOgistic REgression (GLORE): building shared models without sharing data.
J Am Med Inform Assoc. 2012 Sep-Oct;19(5):758-64. doi: 10.1136/amiajnl-2012-000862. Epub 2012 Apr 17.
2
iDASH: integrating data for analysis, anonymization, and sharing.
J Am Med Inform Assoc. 2012 Mar-Apr;19(2):196-201. doi: 10.1136/amiajnl-2011-000538. Epub 2011 Nov 10.
3
Strategies for maintaining patient privacy in i2b2.
J Am Med Inform Assoc. 2011 Dec;18 Suppl 1(Suppl 1):i103-8. doi: 10.1136/amiajnl-2011-000316. Epub 2011 Oct 7.
4
Biomedical imaging modality classification using combined visual features and textual terms.
Int J Biomed Imaging. 2011;2011:241396. doi: 10.1155/2011/241396. Epub 2011 Sep 8.
6
Prediction of novel pre-microRNAs with high accuracy through boosting and SVM.
Bioinformatics. 2011 May 15;27(10):1436-7. doi: 10.1093/bioinformatics/btr148. Epub 2011 Mar 23.
7
Anonymization of electronic medical records for validating genome-wide association studies.
Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7898-903. doi: 10.1073/pnas.0911686107. Epub 2010 Apr 12.
8
A globally optimal k-anonymity method for the de-identification of health data.
J Am Med Inform Assoc. 2009 Sep-Oct;16(5):670-82. doi: 10.1197/jamia.M3144. Epub 2009 Jun 30.
9
Adaptive neuro-fuzzy inference system for classification of ECG signals using Lyapunov exponents.
Comput Methods Programs Biomed. 2009 Mar;93(3):313-21. doi: 10.1016/j.cmpb.2008.10.012. Epub 2008 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验