Department of Pharmaceutical Chemistry, Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, CA 94158, USA.
Circ Res. 2013 Feb 1;112(3):562-74. doi: 10.1161/CIRCRESAHA.111.249235.
Pluripotent stem cells can differentiate into nearly all types of cells in the body. This unique potential provides significant promise for cell-based therapies to restore tissues or organs destroyed by injuries, degenerative diseases, aging, or cancer. The discovery of induced pluripotent stem cell (iPSC) technology offers a possible strategy to generate patient-specific pluripotent stem cells. However, because of concerns about the specificity, efficiency, kinetics, and safety of iPSC reprogramming, improvements or fundamental changes in this process are required before their effective clinical use. A chemical approach is regarded as a promising strategy to improve and change the iPSC process. Dozens of small molecules have been identified that can functionally replace reprogramming factors and significantly improve iPSC reprogramming. In addition to the prospect of deriving patient-specific tissues and organs from iPSCs, another attractive strategy for regenerative medicine is transdifferentiation-the direct conversion of one somatic cell type to another. Recent studies revealed a new paradigm of transdifferentiation: using transcription factors used in iPSC generation to induce transdifferentiation or called iPSC transcription factor-based transdifferentiation. This type of transdifferentiation not only reveals and uses the developmentally plastic intermediates generated during iPSC reprogramming but also produces a wide range of cells, including expandable tissue-specific precursor cells. Here, we review recent progress of small molecule approaches in the generation of iPSCs. In addition, we summarize the new concept of iPSC transcription factor-based transdifferentiation and discuss its application in generating various lineage-specific cells, especially cardiovascular cells.
多能干细胞可以分化为体内几乎所有类型的细胞。这种独特的潜力为基于细胞的疗法提供了重要的前景,可以恢复因损伤、退行性疾病、衰老或癌症而受损的组织或器官。诱导多能干细胞(iPSC)技术的发现为生成患者特异性多能干细胞提供了一种可能的策略。然而,由于对 iPSC 重编程的特异性、效率、动力学和安全性的担忧,需要对该过程进行改进或根本性改变,然后才能将其有效应用于临床。化学方法被认为是改善和改变 iPSC 过程的一种有前途的策略。已经鉴定出数十种小分子,它们可以在功能上替代重编程因子,并显著提高 iPSC 重编程效率。除了从 iPSCs 中衍生出患者特异性组织和器官的前景外,再生医学的另一个有吸引力的策略是转分化-将一种体细胞类型直接转化为另一种体细胞类型。最近的研究揭示了转分化的一个新范例:使用 iPSC 生成中使用的转录因子来诱导转分化或称为 iPSC 转录因子基转分化。这种类型的转分化不仅揭示并利用了 iPSC 重编程过程中产生的发育可塑性中间产物,而且还产生了广泛的细胞,包括可扩展的组织特异性前体细胞。在这里,我们回顾了小分子方法在 iPSC 生成中的最新进展。此外,我们总结了 iPSC 转录因子基转分化的新概念,并讨论了其在生成各种谱系特异性细胞,特别是心血管细胞中的应用。