Suppr超能文献

体细胞重编程的进展。

Progress in the reprogramming of somatic cells.

机构信息

Department of Pharmaceutical Chemistry, Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, CA 94158, USA.

出版信息

Circ Res. 2013 Feb 1;112(3):562-74. doi: 10.1161/CIRCRESAHA.111.249235.

Abstract

Pluripotent stem cells can differentiate into nearly all types of cells in the body. This unique potential provides significant promise for cell-based therapies to restore tissues or organs destroyed by injuries, degenerative diseases, aging, or cancer. The discovery of induced pluripotent stem cell (iPSC) technology offers a possible strategy to generate patient-specific pluripotent stem cells. However, because of concerns about the specificity, efficiency, kinetics, and safety of iPSC reprogramming, improvements or fundamental changes in this process are required before their effective clinical use. A chemical approach is regarded as a promising strategy to improve and change the iPSC process. Dozens of small molecules have been identified that can functionally replace reprogramming factors and significantly improve iPSC reprogramming. In addition to the prospect of deriving patient-specific tissues and organs from iPSCs, another attractive strategy for regenerative medicine is transdifferentiation-the direct conversion of one somatic cell type to another. Recent studies revealed a new paradigm of transdifferentiation: using transcription factors used in iPSC generation to induce transdifferentiation or called iPSC transcription factor-based transdifferentiation. This type of transdifferentiation not only reveals and uses the developmentally plastic intermediates generated during iPSC reprogramming but also produces a wide range of cells, including expandable tissue-specific precursor cells. Here, we review recent progress of small molecule approaches in the generation of iPSCs. In addition, we summarize the new concept of iPSC transcription factor-based transdifferentiation and discuss its application in generating various lineage-specific cells, especially cardiovascular cells.

摘要

多能干细胞可以分化为体内几乎所有类型的细胞。这种独特的潜力为基于细胞的疗法提供了重要的前景,可以恢复因损伤、退行性疾病、衰老或癌症而受损的组织或器官。诱导多能干细胞(iPSC)技术的发现为生成患者特异性多能干细胞提供了一种可能的策略。然而,由于对 iPSC 重编程的特异性、效率、动力学和安全性的担忧,需要对该过程进行改进或根本性改变,然后才能将其有效应用于临床。化学方法被认为是改善和改变 iPSC 过程的一种有前途的策略。已经鉴定出数十种小分子,它们可以在功能上替代重编程因子,并显著提高 iPSC 重编程效率。除了从 iPSCs 中衍生出患者特异性组织和器官的前景外,再生医学的另一个有吸引力的策略是转分化-将一种体细胞类型直接转化为另一种体细胞类型。最近的研究揭示了转分化的一个新范例:使用 iPSC 生成中使用的转录因子来诱导转分化或称为 iPSC 转录因子基转分化。这种类型的转分化不仅揭示并利用了 iPSC 重编程过程中产生的发育可塑性中间产物,而且还产生了广泛的细胞,包括可扩展的组织特异性前体细胞。在这里,我们回顾了小分子方法在 iPSC 生成中的最新进展。此外,我们总结了 iPSC 转录因子基转分化的新概念,并讨论了其在生成各种谱系特异性细胞,特别是心血管细胞中的应用。

相似文献

1
Progress in the reprogramming of somatic cells.
Circ Res. 2013 Feb 1;112(3):562-74. doi: 10.1161/CIRCRESAHA.111.249235.
2
Pharmacological Reprogramming of Somatic Cells for Regenerative Medicine.
Acc Chem Res. 2017 May 16;50(5):1202-1211. doi: 10.1021/acs.accounts.7b00020. Epub 2017 Apr 28.
3
Chemically Induced Reprogramming of Somatic Cells to Pluripotent Stem Cells and Neural Cells.
Int J Mol Sci. 2016 Feb 6;17(2):226. doi: 10.3390/ijms17020226.
4
Effect of small molecules on cell reprogramming.
Mol Biosyst. 2017 Jan 31;13(2):277-313. doi: 10.1039/c6mb00595k.
5
Small molecules for reprogramming and transdifferentiation.
Cell Mol Life Sci. 2017 Oct;74(19):3553-3575. doi: 10.1007/s00018-017-2586-x. Epub 2017 Jul 11.
6
RNA-based tools for nuclear reprogramming and lineage-conversion: towards clinical applications.
J Cardiovasc Transl Res. 2013 Dec;6(6):956-68. doi: 10.1007/s12265-013-9494-8. Epub 2013 Jul 13.
8
Epigenetic Control of Reprogramming and Transdifferentiation by Histone Modifications.
Stem Cell Rev Rep. 2016 Dec;12(6):708-720. doi: 10.1007/s12015-016-9682-4.
9
Cellular Reprogramming Using Protein and Cell-Penetrating Peptides.
Int J Mol Sci. 2017 Mar 3;18(3):552. doi: 10.3390/ijms18030552.

引用本文的文献

1
The Interface of Gene Editing with Regenerative Medicine.
Engineering (Beijing). 2025 Mar;46:73-100. doi: 10.1016/j.eng.2024.10.019. Epub 2024 Nov 30.
2
The Progress and Promise of Lineage Reprogramming Strategies for Liver Regeneration.
Cell Mol Gastroenterol Hepatol. 2024;18(6):101395. doi: 10.1016/j.jcmgh.2024.101395. Epub 2024 Aug 30.
3
Unlocking the therapeutic potential: odyssey of induced pluripotent stem cells in precision cell therapies.
Int J Surg. 2024 Oct 1;110(10):6432-6455. doi: 10.1097/JS9.0000000000001892.
4
as potential key regulators of genomic integrity and cellular survival in iPSCs.
Front Mol Biosci. 2024 Feb 5;11:1342011. doi: 10.3389/fmolb.2024.1342011. eCollection 2024.
5
Chemical Transdifferentiation of Somatic Cells: Unleashing the Power of Small Molecules.
Biomedicines. 2023 Oct 27;11(11):2913. doi: 10.3390/biomedicines11112913.
6
Unlocking the potential of stem cells: Their crucial role in the production of cultivated meat.
Curr Res Food Sci. 2023 Jul 22;7:100551. doi: 10.1016/j.crfs.2023.100551. eCollection 2023.
7
Characterization of mitochondrial and metabolic alterations induced by trisomy 21 during neural differentiation.
Free Radic Biol Med. 2023 Feb 20;196:11-21. doi: 10.1016/j.freeradbiomed.2023.01.009. Epub 2023 Jan 10.
8
Resolving Geroplasticity to the Balance of Rejuvenins and Geriatrins.
Aging Dis. 2022 Dec 1;13(6):1664-1714. doi: 10.14336/AD.2022.0414.
9
Tissue-Engineered Models of the Human Brain: State-of-the-Art Analysis and Challenges.
J Funct Biomater. 2022 Sep 9;13(3):146. doi: 10.3390/jfb13030146.
10
The use of fibroblasts as a valuable strategy for studying mitochondrial impairment in neurological disorders.
Transl Neurodegener. 2022 Jul 4;11(1):36. doi: 10.1186/s40035-022-00308-y.

本文引用的文献

1
Wnt: what's needed to maintain pluripotency?
Nat Cell Biol. 2011 Sep 2;13(9):1024-6. doi: 10.1038/ncb2333.
2
MicroRNA-mediated conversion of human fibroblasts to neurons.
Nature. 2011 Jul 13;476(7359):228-31. doi: 10.1038/nature10323.
3
T-cell factor 3 (Tcf3) deletion increases somatic cell reprogramming by inducing epigenome modifications.
Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):11912-7. doi: 10.1073/pnas.1017402108. Epub 2011 Jul 5.
5
Direct generation of functional dopaminergic neurons from mouse and human fibroblasts.
Nature. 2011 Jul 3;476(7359):224-7. doi: 10.1038/nature10284.
6
Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors.
Nature. 2011 Jun 29;475(7356):390-3. doi: 10.1038/nature10263.
7
Mechanisms of nuclear reprogramming by eggs and oocytes: a deterministic process?
Nat Rev Mol Cell Biol. 2011 Jun 23;12(7):453-9. doi: 10.1038/nrm3140.
8
Direct conversion of human fibroblasts to dopaminergic neurons.
Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10343-8. doi: 10.1073/pnas.1105135108. Epub 2011 Jun 6.
9
Reprogramming of mouse and human cells to pluripotency using mature microRNAs.
Cell Stem Cell. 2011 Jun 3;8(6):633-8. doi: 10.1016/j.stem.2011.05.001.
10
Induction of human neuronal cells by defined transcription factors.
Nature. 2011 May 26;476(7359):220-3. doi: 10.1038/nature10202.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验