Suppr超能文献

增强子染色质的修饰:是什么、如何修饰以及为什么要修饰?

Modification of enhancer chromatin: what, how, and why?

机构信息

Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.

出版信息

Mol Cell. 2013 Mar 7;49(5):825-37. doi: 10.1016/j.molcel.2013.01.038.

Abstract

Emergence of form and function during embryogenesis arises in large part through cell-type- and cell-state-specific variation in gene expression patterns, mediated by specialized cis-regulatory elements called enhancers. Recent large-scale epigenomic mapping revealed unexpected complexity and dynamics of enhancer utilization patterns, with 400,000 putative human enhancers annotated by the ENCODE project alone. These large-scale efforts were largely enabled through the understanding that enhancers share certain stereotypical chromatin features. However, an important question still lingers: what is the functional significance of enhancer chromatin modification? Here we give an overview of enhancer-associated modifications of histones and DNA and discuss enzymatic activities involved in their dynamic deposition and removal. We describe potential downstream effectors of these marks and propose models for exploring functions of chromatin modification in regulating enhancer activity during development.

摘要

胚胎发生过程中形态和功能的出现,在很大程度上是通过基因表达模式的细胞类型和细胞状态特异性变化产生的,这种变化是由称为增强子的特殊顺式调控元件介导的。最近的大规模表观基因组图谱揭示了增强子利用模式的出人意料的复杂性和动态性,仅 ENCODE 项目就注释了 40 万个假定的人类增强子。这些大规模的研究在很大程度上是通过了解增强子共享某些典型的染色质特征来实现的。然而,一个重要的问题仍然存在:增强子染色质修饰的功能意义是什么?在这里,我们概述了与增强子相关的组蛋白和 DNA 的修饰,并讨论了参与其动态沉积和去除的酶活性。我们描述了这些标记物的潜在下游效应物,并提出了探索染色质修饰在发育过程中调节增强子活性的功能的模型。

相似文献

1
Modification of enhancer chromatin: what, how, and why?
Mol Cell. 2013 Mar 7;49(5):825-37. doi: 10.1016/j.molcel.2013.01.038.
3
Epigenome overlap measure (EPOM) for comparing tissue/cell types based on chromatin states.
BMC Genomics. 2016 Jan 11;17 Suppl 1(Suppl 1):10. doi: 10.1186/s12864-015-2303-9.
4
5
The role of chromatin dynamics in immune cell development.
Immunol Rev. 2014 Sep;261(1):9-22. doi: 10.1111/imr.12200.
6
Accurate Promoter and Enhancer Identification in 127 ENCODE and Roadmap Epigenomics Cell Types and Tissues by GenoSTAN.
PLoS One. 2017 Jan 5;12(1):e0169249. doi: 10.1371/journal.pone.0169249. eCollection 2017.
8
Establishment and function of chromatin modification at enhancers.
Open Biol. 2020 Oct;10(10):200255. doi: 10.1098/rsob.200255. Epub 2020 Oct 14.
10
Enhancer prediction in the human genome by probabilistic modelling of the chromatin feature patterns.
BMC Bioinformatics. 2020 Jul 20;21(1):317. doi: 10.1186/s12859-020-03621-3.

引用本文的文献

1
Machine learning tools for deciphering the regulatory logic of enhancers in health and disease.
Front Genet. 2025 Aug 13;16:1603687. doi: 10.3389/fgene.2025.1603687. eCollection 2025.
2
From Petri Dish to Primitive Heart: How IVF Alters Early Cardiac Gene Networks and Epigenetic Landscapes.
Biomedicines. 2025 Aug 21;13(8):2044. doi: 10.3390/biomedicines13082044.
4
Enhancer regulation in cancer: from epigenetics to mA RNA modification.
Arch Pharm Res. 2025 Aug 19. doi: 10.1007/s12272-025-01561-1.
5
Uncovering hidden enhancers through unbiased in vivo testing.
Nat Commun. 2025 Aug 8;16(1):7313. doi: 10.1038/s41467-025-62497-0.
6
Epigenetic regulation of brain development, plasticity, and response to early-life stress.
Neuropsychopharmacology. 2025 Aug 6. doi: 10.1038/s41386-025-02179-z.
7
SCoTCH-seq reveals that 5-hydroxymethylcytosine encodes regulatory information across DNA strands.
Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2512204122. doi: 10.1073/pnas.2512204122. Epub 2025 Jul 31.
10
Epigenetic priming of mammalian embryonic enhancer elements coordinates developmental gene networks.
Genome Biol. 2025 Jul 18;26(1):214. doi: 10.1186/s13059-025-03658-8.

本文引用的文献

1
Genome-wide quantitative enhancer activity maps identified by STARR-seq.
Science. 2013 Mar 1;339(6123):1074-7. doi: 10.1126/science.1232542. Epub 2013 Jan 17.
2
H2A.Z facilitates access of active and repressive complexes to chromatin in embryonic stem cell self-renewal and differentiation.
Cell Stem Cell. 2013 Feb 7;12(2):180-92. doi: 10.1016/j.stem.2012.11.003. Epub 2012 Dec 20.
3
Foxa2 and H2A.Z mediate nucleosome depletion during embryonic stem cell differentiation.
Cell. 2012 Dec 21;151(7):1608-16. doi: 10.1016/j.cell.2012.11.018.
4
Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4.
Genes Dev. 2012 Dec 1;26(23):2604-20. doi: 10.1101/gad.201327.112. Epub 2012 Nov 19.
5
Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells.
J Biol Chem. 2012 Dec 14;287(51):43137-55. doi: 10.1074/jbc.M112.413047. Epub 2012 Oct 19.
7
Epigenomic annotation of enhancers predicts transcriptional regulators of human neural crest.
Cell Stem Cell. 2012 Nov 2;11(5):633-48. doi: 10.1016/j.stem.2012.07.006. Epub 2012 Sep 13.
8
Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage.
Cell. 2012 Sep 28;151(1):206-20. doi: 10.1016/j.cell.2012.07.035. Epub 2012 Sep 12.
9
Circuitry and dynamics of human transcription factor regulatory networks.
Cell. 2012 Sep 14;150(6):1274-86. doi: 10.1016/j.cell.2012.04.040. Epub 2012 Sep 5.
10
Ubiquitous heterogeneity and asymmetry of the chromatin environment at regulatory elements.
Genome Res. 2012 Sep;22(9):1735-47. doi: 10.1101/gr.136366.111.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验