Suppr超能文献

光声镊子:一种基于光热产生、声激活表面气泡的可编程、局域化细胞浓缩器。

Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles.

机构信息

Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Lab Chip. 2013 May 7;13(9):1772-1779. doi: 10.1039/c3lc00043e.

Abstract

We present a programmable, biocompatible technique for dynamically concentrating and patterning particles and cells in a microfluidic device. Since our technique utilizes opto-thermally generated, acoustically activated, surface bubbles, we name it "optoacoustic tweezers". The optoacoustic tweezers are capable of concentrating particles/cells at any prescribed locations in a microfluidic chamber without the use of permanent structures, rendering it particularly useful for the formation of flexible, complex cell patterns. Additionally, this technique has demonstrated excellent biocompatibility and can be conveniently integrated with other microfluidic units. In our experiments, micro-bubbles were generated by focusing a 405 nm diode laser onto a gold-coated glass chamber. By properly tuning the laser, we demonstrate precise control over the position and size of the generated bubbles. Acoustic waves were then applied to activate the surface bubbles, causing them to oscillate at an optimized frequency. The resulting acoustic radiation force allowed us to locally trap particles/cells, including 15 μm polystyrene beads and HeLa cells, around each bubble. Cell-adhesion tests were also conducted after cell concentrating to confirm the biocompatibility of this technique.

摘要

我们提出了一种可编程的、生物兼容的技术,用于在微流控装置中动态浓缩和图案化粒子和细胞。由于我们的技术利用光热产生的、声激活的表面气泡,因此我们将其命名为“光声镊子”。光声镊子能够在微流控室中的任何预定位置浓缩粒子/细胞,而无需使用永久结构,这使其特别适用于形成灵活、复杂的细胞图案。此外,该技术具有出色的生物兼容性,并且可以方便地与其他微流控单元集成。在我们的实验中,通过将 405nm 激光聚焦到镀金玻璃室上,生成微气泡。通过适当调整激光,我们可以精确控制生成气泡的位置和大小。然后施加声波以激活表面气泡,使它们在优化的频率下振荡。由此产生的声辐射力使我们能够在每个气泡周围局部捕获粒子/细胞,包括 15μm 的聚苯乙烯珠和 HeLa 细胞。在浓缩细胞后还进行了细胞黏附测试,以确认该技术的生物兼容性。

相似文献

2
Probing Cell Deformability via Acoustically Actuated Bubbles.
Small. 2016 Feb 17;12(7):902-10. doi: 10.1002/smll.201502220. Epub 2015 Dec 30.
3
Acoustofluidic relay: sequential trapping and transporting of microparticles via acoustically excited oscillating bubbles.
J Lab Autom. 2014 Apr;19(2):137-43. doi: 10.1177/2211068213485748. Epub 2013 Apr 16.
4
On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves.
Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11105-9. doi: 10.1073/pnas.1209288109. Epub 2012 Jun 25.
5
Acoustic force measurements on polymer-coated microbubbles in a microfluidic device.
J Acoust Soc Am. 2017 May;141(5):3364. doi: 10.1121/1.4979933.
9
Study on the bubble transport mechanism in an acoustic standing wave field.
Ultrasonics. 2011 Dec;51(8):1014-25. doi: 10.1016/j.ultras.2011.05.018. Epub 2011 Jun 13.

引用本文的文献

1
Light-Driven, Dynamic Assembly of Micron-To-Centimeter Parts, Micromachines and Microbot Swarms.
Adv Sci (Weinh). 2024 Aug;11(32):e2402263. doi: 10.1002/advs.202402263. Epub 2024 Jun 24.
2
Exploiting Sound for Emerging Applications of Extracellular Vesicles.
Nano Res. 2024 Feb;17(2):462-475. doi: 10.1007/s12274-023-5840-6. Epub 2023 Jul 1.
3
Light-driven soft microrobots based on hydrogels and LCEs: development and prospects.
RSC Adv. 2024 Apr 29;14(20):14278-14288. doi: 10.1039/d4ra00495g. eCollection 2024 Apr 25.
4
Hypothermal opto-thermophoretic tweezers.
Nat Commun. 2023 Aug 23;14(1):5133. doi: 10.1038/s41467-023-40865-y.
5
Manipulation with sound and vibration: A review on the micromanipulation system based on sub-MHz acoustic waves.
Ultrason Sonochem. 2023 Jun;96:106441. doi: 10.1016/j.ultsonch.2023.106441. Epub 2023 May 13.
6
Optical Manipulation Heats up: Present and Future of Optothermal Manipulation.
ACS Nano. 2023 Apr 25;17(8):7051-7063. doi: 10.1021/acsnano.3c00536. Epub 2023 Apr 6.
7
Hypothermal opto-thermophoretic tweezers.
Res Sq. 2023 Jan 20:rs.3.rs-2389570. doi: 10.21203/rs.3.rs-2389570/v1.
8
Noninvasive prenatal diagnosis targeting fetal nucleated red blood cells.
J Nanobiotechnology. 2022 Dec 30;20(1):546. doi: 10.1186/s12951-022-01749-3.
9
Review of Bubble Applications in Microrobotics: Propulsion, Manipulation, and Assembly.
Micromachines (Basel). 2022 Jul 4;13(7):1068. doi: 10.3390/mi13071068.
10
Heat-Mediated Optical Manipulation.
Chem Rev. 2022 Feb 9;122(3):3122-3179. doi: 10.1021/acs.chemrev.1c00626. Epub 2021 Nov 19.

本文引用的文献

1
Patterned three-dimensional encapsulation of embryonic stem cells using dielectrophoresis and stereolithography.
Adv Healthc Mater. 2013 Mar;2(3):450-8. doi: 10.1002/adhm.201200318. Epub 2012 Nov 27.
3
Standing surface acoustic wave (SSAW) based multichannel cell sorting.
Lab Chip. 2012 Nov 7;12(21):4228-31. doi: 10.1039/c2lc40751e.
4
Electrokinetic focusing and separation of mammalian cells in conductive biological fluids.
Analyst. 2012 Nov 21;137(22):5215-21. doi: 10.1039/c2an35707k. Epub 2012 Aug 31.
6
Double spiral microchannel for label-free tumor cell separation and enrichment.
Lab Chip. 2012 Oct 21;12(20):3952-60. doi: 10.1039/c2lc40679a.
7
Revisiting lab-on-a-chip technology for drug discovery.
Nat Rev Drug Discov. 2012 Aug;11(8):620-32. doi: 10.1038/nrd3799.
8
Surface acoustic wave (SAW) acoustophoresis: now and beyond.
Lab Chip. 2012 Aug 21;12(16):2766-70. doi: 10.1039/c2lc90076a. Epub 2012 Jul 10.
9
On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves.
Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11105-9. doi: 10.1073/pnas.1209288109. Epub 2012 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验