Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.
Lab Chip. 2013 May 7;13(9):1772-1779. doi: 10.1039/c3lc00043e.
We present a programmable, biocompatible technique for dynamically concentrating and patterning particles and cells in a microfluidic device. Since our technique utilizes opto-thermally generated, acoustically activated, surface bubbles, we name it "optoacoustic tweezers". The optoacoustic tweezers are capable of concentrating particles/cells at any prescribed locations in a microfluidic chamber without the use of permanent structures, rendering it particularly useful for the formation of flexible, complex cell patterns. Additionally, this technique has demonstrated excellent biocompatibility and can be conveniently integrated with other microfluidic units. In our experiments, micro-bubbles were generated by focusing a 405 nm diode laser onto a gold-coated glass chamber. By properly tuning the laser, we demonstrate precise control over the position and size of the generated bubbles. Acoustic waves were then applied to activate the surface bubbles, causing them to oscillate at an optimized frequency. The resulting acoustic radiation force allowed us to locally trap particles/cells, including 15 μm polystyrene beads and HeLa cells, around each bubble. Cell-adhesion tests were also conducted after cell concentrating to confirm the biocompatibility of this technique.
我们提出了一种可编程的、生物兼容的技术,用于在微流控装置中动态浓缩和图案化粒子和细胞。由于我们的技术利用光热产生的、声激活的表面气泡,因此我们将其命名为“光声镊子”。光声镊子能够在微流控室中的任何预定位置浓缩粒子/细胞,而无需使用永久结构,这使其特别适用于形成灵活、复杂的细胞图案。此外,该技术具有出色的生物兼容性,并且可以方便地与其他微流控单元集成。在我们的实验中,通过将 405nm 激光聚焦到镀金玻璃室上,生成微气泡。通过适当调整激光,我们可以精确控制生成气泡的位置和大小。然后施加声波以激活表面气泡,使它们在优化的频率下振荡。由此产生的声辐射力使我们能够在每个气泡周围局部捕获粒子/细胞,包括 15μm 的聚苯乙烯珠和 HeLa 细胞。在浓缩细胞后还进行了细胞黏附测试,以确认该技术的生物兼容性。