Suppr超能文献

A 组链球菌半胱氨酸蛋白酶裂解上皮连接,有助于细菌易位。

Group A streptococcal cysteine protease cleaves epithelial junctions and contributes to bacterial translocation.

机构信息

Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan.

出版信息

J Biol Chem. 2013 May 10;288(19):13317-24. doi: 10.1074/jbc.M113.459875. Epub 2013 Mar 26.

Abstract

BACKGROUND

Group A Streptococcus (GAS) translocates across the host epithelial barrier.

RESULTS

Streptococcal pyrogenic exotoxin B (SpeB) directly cleaves junctional proteins.

CONCLUSION

The proteolytic efficacy of SpeB allows GAS to translocate across the epithelial barrier.

SIGNIFICANCE

SpeB-mediated dysfunction of the epithelial barrier may have important implications for not only bacterial invasion but also dissemination of other virulence factors throughout intercellular spaces. Group A Streptococcus (GAS) is an important human pathogen that possesses an ability to translocate across the epithelial barrier. In this study, culture supernatants of tested GAS strains showed proteolytic activity against human occludin and E-cadherin. Utilizing various types of protease inhibitors and amino acid sequence analysis, we identified SpeB (streptococcal pyrogenic exotoxin B) as the proteolytic factor that cleaves E-cadherin in the region neighboring the calcium-binding sites within the extracellular domain. The cleaving activities of culture supernatants from several GAS isolates were correlated with the amount of active SpeB, whereas culture supernatants from an speB mutant showed no such activities. Of note, the wild type strain efficiently translocated across the epithelial monolayer along with cleavage of occludin and E-cadherin, whereas deletion of the speB gene compromised those activities. Moreover, destabilization of the junctional proteins was apparently relieved in cells infected with the speB mutant, as compared with those infected with the wild type. Taken together, our findings indicate that the proteolytic efficacy of SpeB in junctional degradation allows GAS to invade deeper into tissues.

摘要

背景

A 组链球菌(GAS)穿过宿主上皮屏障迁移。

结果

链球菌致热外毒素 B(SpeB)直接切割连接蛋白。

结论

SpeB 的蛋白水解效力允许 GAS 穿过上皮屏障迁移。

意义

SpeB 介导的上皮屏障功能障碍不仅对细菌入侵,而且对其他毒力因子通过细胞间空间的传播可能具有重要意义。A 组链球菌(GAS)是一种重要的人类病原体,具有穿过上皮屏障的能力。在这项研究中,测试的 GAS 菌株的培养上清液显示对人闭合蛋白和 E-钙粘蛋白具有蛋白水解活性。利用各种类型的蛋白酶抑制剂和氨基酸序列分析,我们确定 SpeB(链球菌致热外毒素 B)是切割 E-钙粘蛋白的蛋白水解因子,该蛋白在细胞外域的钙结合位点附近切割 E-钙粘蛋白。几个 GAS 分离株的培养上清液的切割活性与活性 SpeB 的量相关,而 speB 突变体的培养上清液则没有这种活性。值得注意的是,野生型菌株有效地穿过上皮单层迁移,同时切割闭合蛋白和 E-钙粘蛋白,而 speB 基因的缺失则削弱了这些活性。此外,与感染野生型的细胞相比,感染 speB 突变体的细胞中连接蛋白的稳定性明显得到缓解。总之,我们的研究结果表明,SpeB 在连接降解中的蛋白水解效力允许 GAS 更深地侵入组织。

相似文献

1
Group A streptococcal cysteine protease cleaves epithelial junctions and contributes to bacterial translocation.
J Biol Chem. 2013 May 10;288(19):13317-24. doi: 10.1074/jbc.M113.459875. Epub 2013 Mar 26.
3
Streptolysin S contributes to group A streptococcal translocation across an epithelial barrier.
J Biol Chem. 2011 Jan 28;286(4):2750-61. doi: 10.1074/jbc.M110.171504. Epub 2010 Nov 17.
6
The M protein is dispensable for maturation of streptococcal cysteine protease SpeB.
Infect Immun. 2005 Feb;73(2):859-64. doi: 10.1128/IAI.73.2.859-864.2005.
7
[Streptococcus pyogenes translocates across an epithelial barrier].
Nihon Saikingaku Zasshi. 2017;72(3):213-218. doi: 10.3412/jsb.72.213.
8
Leaderless secreted peptide signaling molecule alters global gene expression and increases virulence of a human bacterial pathogen.
Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):E8498-E8507. doi: 10.1073/pnas.1705972114. Epub 2017 Sep 18.
10
Cysteine proteinase from Streptococcus pyogenes enables evasion of innate immunity via degradation of complement factors.
J Biol Chem. 2013 May 31;288(22):15854-64. doi: 10.1074/jbc.M113.469106. Epub 2013 Apr 15.

引用本文的文献

1
A mini review of the pathogenesis of acute rheumatic fever and rheumatic heart disease.
Front Cell Infect Microbiol. 2025 Apr 10;15:1447149. doi: 10.3389/fcimb.2025.1447149. eCollection 2025.
2
Intestinal luminal anion transporters and their interplay with gut microbiome and inflammation.
Am J Physiol Cell Physiol. 2025 May 1;328(5):C1455-C1472. doi: 10.1152/ajpcell.00026.2025. Epub 2025 Mar 6.
3
Characterization of a novel SNP identified in Australian group A isolates derived from the M1 lineage.
mBio. 2025 Feb 5;16(2):e0336624. doi: 10.1128/mbio.03366-24. Epub 2024 Dec 17.
4
Serine protease Rv2569c facilitates transmission of Mycobacterium tuberculosis via disrupting the epithelial barrier by cleaving E-cadherin.
PLoS Pathog. 2024 May 9;20(5):e1012214. doi: 10.1371/journal.ppat.1012214. eCollection 2024 May.
5
Research progress on the microbiota in bladder cancer tumors.
Front Cell Infect Microbiol. 2024 Apr 8;14:1374944. doi: 10.3389/fcimb.2024.1374944. eCollection 2024.
6
Cleavage of cell junction proteins as a host invasion strategy in leptospirosis.
Appl Microbiol Biotechnol. 2024 Dec;108(1):119. doi: 10.1007/s00253-023-12945-y. Epub 2024 Jan 10.
7
Direct and indirect effects of pathogenic bacteria on the integrity of intestinal barrier.
Therap Adv Gastroenterol. 2023 May 30;16:17562848231176427. doi: 10.1177/17562848231176427. eCollection 2023.
8
Pathogenesis, epidemiology and control of Group A Streptococcus infection.
Nat Rev Microbiol. 2023 Jul;21(7):431-447. doi: 10.1038/s41579-023-00865-7. Epub 2023 Mar 9.
9
Bladder cancer-associated microbiota: Recent advances and future perspectives.
Heliyon. 2023 Jan 16;9(1):e13012. doi: 10.1016/j.heliyon.2023.e13012. eCollection 2023 Jan.
10
Investigating the Antibacterial Properties of Prospective Scabicides.
Biomedicines. 2022 Dec 19;10(12):3287. doi: 10.3390/biomedicines10123287.

本文引用的文献

2
Assembly mechanism of FCT region type 1 pili in serotype M6 Streptococcus pyogenes.
J Biol Chem. 2011 Oct 28;286(43):37566-77. doi: 10.1074/jbc.M111.239780. Epub 2011 Aug 31.
3
From transcription to activation: how group A streptococcus, the flesh-eating pathogen, regulates SpeB cysteine protease production.
Mol Microbiol. 2011 Aug;81(3):588-601. doi: 10.1111/j.1365-2958.2011.07709.x. Epub 2011 Jun 24.
5
Human pathogenic streptococcal proteomics and vaccine development.
Proteomics Clin Appl. 2008 Mar;2(3):387-410. doi: 10.1002/prca.200780048.
6
Streptolysin S contributes to group A streptococcal translocation across an epithelial barrier.
J Biol Chem. 2011 Jan 28;286(4):2750-61. doi: 10.1074/jbc.M110.171504. Epub 2010 Nov 17.
7
Effects of streptococcal pyrogenic exotoxin B on pathogenesis of Streptococcus pyogenes.
J Formos Med Assoc. 2008 Sep;107(9):677-85. doi: 10.1016/S0929-6646(08)60112-6.
8
Molecular mechanisms underlying group A streptococcal pathogenesis.
Cell Microbiol. 2009 Jan;11(1):1-12. doi: 10.1111/j.1462-5822.2008.01225.x. Epub 2008 Aug 15.
9
The Caco-2 cell monolayer: usefulness and limitations.
Expert Opin Drug Metab Toxicol. 2008 Apr;4(4):395-411. doi: 10.1517/17425255.4.4.395.
10
Group A streptococcal cysteine protease degrades C3 (C3b) and contributes to evasion of innate immunity.
J Biol Chem. 2008 Mar 7;283(10):6253-60. doi: 10.1074/jbc.M704821200. Epub 2007 Dec 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验