Suppr超能文献

当前线性混合模型拟合软件程序概述

An Overview of Current Software Procedures for Fitting Linear Mixed Models.

作者信息

West Brady T, Galecki Andrzej T

机构信息

Institute for Social Research, Center for Statistical Consultation and Research, University of Michigan-Ann Arbor, Ann Arbor, MI, 48109.

出版信息

Am Stat. 2012 Jan 24;65(4):274-282. doi: 10.1198/tas.2011.11077.

Abstract

At present, there are many software procedures available enabling statisticians to fit linear mixed models (LMMs) to continuous dependent variables in clustered or longitudinal data sets. LMMs are flexible tools for analyzing relationships among variables in these types of data sets, in that a variety of covariance structures can be used depending on the subject matter under study. The explicit random effects in LMMs allow analysts to make inferences about the variability between clusters or subjects in larger hypothetical populations, and examine cluster- or subject-level variables that explain portions of this variability. These models can also be used to analyze longitudinal or clustered data sets with data that are missing at random (MAR), and can accommodate time-varying covariates in longitudinal data sets. While the software procedures currently available have many features in common, more specific analytic aspects of fitting LMMs (e.g., crossed random effects, appropriate hypothesis testing for variance components, diagnostics, incorporating sampling weights) may only be available in selected software procedures. With this article, we aim to perform a comprehensive and up-to-date comparison of the current capabilities of software procedures for fitting LMMs, and provide statisticians with a guide for selecting a software procedure appropriate for their analytic goals.

摘要

目前,有许多软件程序可供统计学家将线性混合模型(LMMs)应用于聚类或纵向数据集中的连续因变量。LMMs是分析这类数据集中变量之间关系的灵活工具,因为根据所研究的主题可以使用各种协方差结构。LMMs中明确的随机效应使分析人员能够对更大的假设总体中聚类或个体之间的变异性进行推断,并检验解释部分变异性的聚类或个体水平变量。这些模型还可用于分析具有随机缺失(MAR)数据的纵向或聚类数据集,并可处理纵向数据集中随时间变化的协变量。虽然目前可用的软件程序有许多共同特征,但拟合LMMs的更具体分析方面(例如,交叉随机效应、方差分量的适当假设检验、诊断、纳入抽样权重)可能仅在选定的软件程序中可用。在本文中,我们旨在对拟合LMMs的软件程序的当前功能进行全面和最新的比较,并为统计学家提供选择适合其分析目标的软件程序的指南。

相似文献

1
An Overview of Current Software Procedures for Fitting Linear Mixed Models.
Am Stat. 2012 Jan 24;65(4):274-282. doi: 10.1198/tas.2011.11077.
2
Analyzing longitudinal data with the linear mixed models procedure in SPSS.
Eval Health Prof. 2009 Sep;32(3):207-28. doi: 10.1177/0163278709338554. Epub 2009 Aug 13.
3
lme4GS: An R-Package for Genomic Selection.
Front Genet. 2021 Jun 18;12:680569. doi: 10.3389/fgene.2021.680569. eCollection 2021.
4
Zero-Inflated gaussian mixed models for analyzing longitudinal microbiome data.
PLoS One. 2020 Nov 9;15(11):e0242073. doi: 10.1371/journal.pone.0242073. eCollection 2020.
5
Bayesian model selection in linear mixed models for longitudinal data.
J Appl Stat. 2019 Aug 22;47(5):890-913. doi: 10.1080/02664763.2019.1657814. eCollection 2020.
8
A strategy for selecting among alternative models for continuous longitudinal data.
Res Nurs Health. 2012 Dec;35(6):647-58. doi: 10.1002/nur.21508. Epub 2012 Aug 21.
9
Linear mixed-effects modeling approach to FMRI group analysis.
Neuroimage. 2013 Jun;73:176-90. doi: 10.1016/j.neuroimage.2013.01.047. Epub 2013 Jan 30.
10
Misspecifying the covariance structure in a linear mixed model under MAR drop-out.
Stat Med. 2020 Oct 15;39(23):3027-3041. doi: 10.1002/sim.8589. Epub 2020 May 25.

引用本文的文献

3
Are there interindividual differences in the reactive hypoglycaemia response to breakfast? A replicate crossover trial.
Eur J Nutr. 2024 Dec;63(8):2897-2909. doi: 10.1007/s00394-024-03467-y. Epub 2024 Sep 4.
4
Are There Interindividual Responses of Cardiovascular Disease Risk Markers to Acute Exercise? A Replicate Crossover Trial.
Med Sci Sports Exerc. 2024 Jan 1;56(1):63-72. doi: 10.1249/MSS.0000000000003283. Epub 2023 Aug 30.
9
Altered cerebrovascular response to acute exercise in patients with Huntington's disease.
Brain Commun. 2020;2(1):fcaa044. doi: 10.1093/braincomms/fcaa044. Epub 2020 Apr 16.
10
Proteome dynamics during homeostatic scaling in cultured neurons.
Elife. 2020 Apr 2;9:e52939. doi: 10.7554/eLife.52939.

本文引用的文献

1
Analyzing longitudinal data with the linear mixed models procedure in SPSS.
Eval Health Prof. 2009 Sep;32(3):207-28. doi: 10.1177/0163278709338554. Epub 2009 Aug 13.
2
Fitting multilevel models in complex survey data with design weights: Recommendations.
BMC Med Res Methodol. 2009 Jul 14;9:49. doi: 10.1186/1471-2288-9-49.
5
MIXREG: a computer program for mixed-effects regression analysis with autocorrelated errors.
Comput Methods Programs Biomed. 1996 May;49(3):229-52. doi: 10.1016/0169-2607(96)01723-3.
7
Random-effects models for longitudinal data.
Biometrics. 1982 Dec;38(4):963-74.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验