Suppr超能文献

EGFR 通过磷酸化 AGO2 调节低氧状态下 microRNA 的成熟。

EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2.

机构信息

Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.

出版信息

Nature. 2013 May 16;497(7449):383-7. doi: 10.1038/nature12080. Epub 2013 May 1.

Abstract

MicroRNAs (miRNAs) are generated by two-step processing to yield small RNAs that negatively regulate target gene expression at the post-transcriptional level. Deregulation of miRNAs has been linked to diverse pathological processes, including cancer. Recent studies have also implicated miRNAs in the regulation of cellular response to a spectrum of stresses, such as hypoxia, which is frequently encountered in the poorly angiogenic core of a solid tumour. However, the upstream regulators of miRNA biogenesis machineries remain obscure, raising the question of how tumour cells efficiently coordinate and impose specificity on miRNA expression and function in response to stresses. Here we show that epidermal growth factor receptor (EGFR), which is the product of a well-characterized oncogene in human cancers, suppresses the maturation of specific tumour-suppressor-like miRNAs in response to hypoxic stress through phosphorylation of argonaute 2 (AGO2) at Tyr 393. The association between EGFR and AGO2 is enhanced by hypoxia, leading to elevated AGO2-Y393 phosphorylation, which in turn reduces the binding of Dicer to AGO2 and inhibits miRNA processing from precursor miRNAs to mature miRNAs. We also identify a long-loop structure in precursor miRNAs as a critical regulatory element in phospho-Y393-AGO2-mediated miRNA maturation. Furthermore, AGO2-Y393 phosphorylation mediates EGFR-enhanced cell survival and invasiveness under hypoxia, and correlates with poorer overall survival in breast cancer patients. Our study reveals a previously unrecognized function of EGFR in miRNA maturation and demonstrates how EGFR is likely to function as a regulator of AGO2 through novel post-translational modification. These findings suggest that modulation of miRNA biogenesis is important for stress response in tumour cells and has potential clinical implications.

摘要

微小 RNA(miRNAs)通过两步加工产生小 RNA,在转录后水平负调控靶基因表达。miRNAs 的失调与多种病理过程有关,包括癌症。最近的研究还表明,miRNAs 参与了细胞对多种应激的反应的调节,如缺氧,缺氧在实体瘤血管生成不良的核心区域经常发生。然而,miRNA 生物发生机制的上游调节因子仍然不清楚,这就提出了一个问题,即肿瘤细胞如何有效地协调并在应对应激时对 miRNA 的表达和功能施加特异性。在这里,我们表明表皮生长因子受体(EGFR)是人类癌症中一种特征明确的癌基因的产物,通过磷酸化 Argonaute 2(AGO2)在 Tyr 393 上抑制特定肿瘤抑制样 miRNAs 对缺氧应激的成熟。EGFR 和 AGO2 之间的关联通过缺氧增强,导致 AGO2-Y393 磷酸化增加,这反过来又减少了 Dicer 与 AGO2 的结合,并抑制了从前体 miRNA 到成熟 miRNA 的 miRNA 加工。我们还发现前体 miRNA 中的长环结构是磷酸化 Y393-AGO2 介导的 miRNA 成熟的关键调节元件。此外,AGO2-Y393 磷酸化介导 EGFR 在缺氧下增强细胞存活和侵袭性,并与乳腺癌患者的总体生存率较差相关。我们的研究揭示了 EGFR 在 miRNA 成熟中的一个以前未被认识的功能,并证明了 EGFR 如何通过新型翻译后修饰可能作为 AGO2 的调节剂发挥作用。这些发现表明,miRNA 生物发生的调节对肿瘤细胞的应激反应很重要,并具有潜在的临床意义。

相似文献

1
EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2.
Nature. 2013 May 16;497(7449):383-7. doi: 10.1038/nature12080. Epub 2013 May 1.
2
EGFR gets in the way of microRNA biogenesis.
Cell Res. 2013 Oct;23(10):1157-8. doi: 10.1038/cr.2013.87. Epub 2013 Jul 9.
3
TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing.
Nature. 2005 Aug 4;436(7051):740-4. doi: 10.1038/nature03868. Epub 2005 Jun 22.
4
Intertwined pathways for Argonaute-mediated microRNA biogenesis in Drosophila.
Nucleic Acids Res. 2014 Feb;42(3):1987-2002. doi: 10.1093/nar/gkt1038. Epub 2013 Nov 12.
6
Comprehensive analysis of microRNA (miRNA) targets in breast cancer cells.
J Biol Chem. 2013 Sep 20;288(38):27480-27493. doi: 10.1074/jbc.M113.491803. Epub 2013 Aug 6.
7
The microRNA Machinery.
Adv Exp Med Biol. 2015;887:15-30. doi: 10.1007/978-3-319-22380-3_2.
8
Alteration of miRNA Biogenesis Regulating Proteins in the Human Microglial Cell Line HMC-3 After Ischemic Stress.
Mol Neurobiol. 2021 Apr;58(4):1535-1549. doi: 10.1007/s12035-020-02210-y. Epub 2020 Nov 19.
9
Hypoxia potentiates microRNA-mediated gene silencing through posttranslational modification of Argonaute2.
Mol Cell Biol. 2011 Dec;31(23):4760-74. doi: 10.1128/MCB.05776-11. Epub 2011 Oct 3.
10
An essential role for Argonaute 2 in EGFR-KRAS signaling in pancreatic cancer development.
Nat Commun. 2020 Jun 4;11(1):2817. doi: 10.1038/s41467-020-16309-2.

引用本文的文献

1
Partners in Silencing: Decoding the Mammalian Argonaute Interactome.
Noncoding RNA. 2025 Aug 19;11(4):62. doi: 10.3390/ncrna11040062.
2
Exploring Multi-Target Therapeutic Strategies for Glioblastoma via Endogenous Network Modeling.
Int J Mol Sci. 2025 Apr 1;26(7):3283. doi: 10.3390/ijms26073283.
3
PCBP2-dependent secretion of miRNAs via extracellular vesicles contributes to the EGFR-driven angiogenesis.
Theranostics. 2025 Jan 1;15(4):1255-1271. doi: 10.7150/thno.102391. eCollection 2025.
4
Recent Advances in the miRNA-Mediated Regulation of Neuronal Differentiation and Death.
Neuromolecular Med. 2024 Dec 8;26(1):52. doi: 10.1007/s12017-024-08820-2.
5
The Role of Dicer Phosphorylation in Gemcitabine Resistance of Pancreatic Cancer.
Int J Mol Sci. 2024 Nov 2;25(21):11797. doi: 10.3390/ijms252111797.
6
Next-Cell Hypothesis: Mechanism of Obesity-Associated Carcinogenesis.
Adv Exp Med Biol. 2024;1460:727-766. doi: 10.1007/978-3-031-63657-8_25.
7
Loss of Lamin A leads to the nuclear translocation of AGO2 and compromised RNA interference.
Nucleic Acids Res. 2024 Sep 9;52(16):9917-9935. doi: 10.1093/nar/gkae589.
8
Nuclear miR-451a activates KDM7A and leads to cetuximab resistance in head and neck squamous cell carcinoma.
Cell Mol Life Sci. 2024 Jun 28;81(1):282. doi: 10.1007/s00018-024-05324-x.
9
Phosphorylation of AGO2 by TBK1 Promotes the Formation of Oncogenic miRISC in NSCLC.
Adv Sci (Weinh). 2024 Apr;11(15):e2305541. doi: 10.1002/advs.202305541. Epub 2024 Feb 13.
10
Beyond genetics: driving cancer with the tumour microenvironment behind the wheel.
Nat Rev Cancer. 2024 Apr;24(4):274-286. doi: 10.1038/s41568-023-00660-9. Epub 2024 Feb 12.

本文引用的文献

1
The structure of human argonaute-2 in complex with miR-20a.
Cell. 2012 Jul 6;150(1):100-10. doi: 10.1016/j.cell.2012.05.017. Epub 2012 Jun 7.
2
The crystal structure of human Argonaute2.
Science. 2012 May 25;336(6084):1037-40. doi: 10.1126/science.1221551. Epub 2012 Apr 26.
3
Recognition of the pre-miRNA structure by Drosophila Dicer-1.
Nat Struct Mol Biol. 2011 Sep 18;18(10):1153-8. doi: 10.1038/nsmb.2125.
4
MicroRNA regulation by RNA-binding proteins and its implications for cancer.
Nat Rev Cancer. 2011 Aug 5;11(9):644-56. doi: 10.1038/nrc3107.
5
Genome-wide YFP fluorescence complementation screen identifies new regulators for telomere signaling in human cells.
Mol Cell Proteomics. 2011 Feb;10(2):M110.001628. doi: 10.1074/mcp.M110.001628. Epub 2010 Nov 2.
6
MicroRNA functions in stress responses.
Mol Cell. 2010 Oct 22;40(2):205-15. doi: 10.1016/j.molcel.2010.09.027.
7
Cell signaling by receptor tyrosine kinases.
Cell. 2010 Jun 25;141(7):1117-34. doi: 10.1016/j.cell.2010.06.011.
8
Modulation of microRNA processing by p53.
Nature. 2009 Jul 23;460(7254):529-33. doi: 10.1038/nature08199.
9
New roles for endosomes: from vesicular carriers to multi-purpose platforms.
Nat Rev Mol Cell Biol. 2009 Apr;10(4):287-92. doi: 10.1038/nrm2652. Epub 2009 Mar 11.
10
MicroRNAs--the micro steering wheel of tumour metastases.
Nat Rev Cancer. 2009 Apr;9(4):293-302. doi: 10.1038/nrc2619. Epub 2009 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验