Suppr超能文献

分次放射诱导的一氧化氮促进神经胶质瘤干细胞的扩增。

Fractionated radiation-induced nitric oxide promotes expansion of glioma stem-like cells.

机构信息

Department of Chemistry, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea.

出版信息

Cancer Sci. 2013 Sep;104(9):1172-7. doi: 10.1111/cas.12207. Epub 2013 Jun 24.

Abstract

Glioblastoma remains an incurable brain disease due to the prevalence of its recurrence. Considerable evidence suggests that glioma stem-like cells are responsible for glioma relapse after treatment, which commonly involves ionizing radiation. Here, we found that fractionated ionizing radiation (2 Gy/day for 3 days) induced glioma stem-like cell expansion and resistance to anticancer treatment such as cisplatin (50 μM) or taxol (500 nM), or by ionizing radiation (10 Gy) in both glioma cell lines (U87, U373) and patient-derived glioma cells. Of note, concomitant increase of nitric oxide production occurred with the radiation-induced increase of the glioma stem-like cell population through upregulation of inducible nitric oxide synthase (iNOS). In line with this observation, downregulation of iNOS effectively reduced the glioma stem-like cell population and decreased resistance to anticancer treatment. Collectively, our results suggest that targeting iNOS in combination with ionizing radiation might increase the efficacy of radiotherapy for glioma treatment.

摘要

由于复发性高,胶质母细胞瘤仍然是一种无法治愈的脑部疾病。有大量证据表明,胶质瘤干细胞是治疗后胶质瘤复发的罪魁祸首,而治疗通常涉及电离辐射。在这里,我们发现,分次电离辐射(每天 2 Gy,共 3 天)可诱导胶质瘤干细胞扩增,并对顺铂(50 μM)或紫杉醇(500 nM)等抗癌药物治疗产生耐药性,或者对两种胶质瘤细胞系(U87、U373)和患者来源的胶质瘤细胞中的电离辐射(10 Gy)产生耐药性。值得注意的是,通过诱导型一氧化氮合酶(iNOS)的上调,一氧化氮的产生与辐射诱导的胶质瘤干细胞群体增加同时发生。与这一观察结果一致的是,iNOS 的下调可有效减少胶质瘤干细胞群体,并降低对抗癌治疗的耐药性。总的来说,我们的结果表明,iNOS 靶向联合电离辐射可能会提高放疗治疗脑肿瘤的疗效。

相似文献

1
Fractionated radiation-induced nitric oxide promotes expansion of glioma stem-like cells.
Cancer Sci. 2013 Sep;104(9):1172-7. doi: 10.1111/cas.12207. Epub 2013 Jun 24.
4
Glioma stem cells promote radioresistance by preferential activation of the DNA damage response.
Nature. 2006 Dec 7;444(7120):756-60. doi: 10.1038/nature05236. Epub 2006 Oct 18.
5
Role of lymphocyte-specific protein tyrosine kinase (LCK) in the expansion of glioma-initiating cells by fractionated radiation.
Biochem Biophys Res Commun. 2010 Nov 26;402(4):631-6. doi: 10.1016/j.bbrc.2010.10.072. Epub 2010 Oct 29.
6
Transcriptional control of brain tumor stem cells by a carbohydrate binding protein.
Cell Rep. 2021 Aug 31;36(9):109647. doi: 10.1016/j.celrep.2021.109647.
7
Hedgehog signaling sensitizes glioma stem cells to endogenous nano-irradiation.
Oncotarget. 2014 Jul 30;5(14):5483-93. doi: 10.18632/oncotarget.2123.
8
Blockade of TGF-β signaling by the TGFβR-I kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma.
Cancer Res. 2011 Dec 1;71(23):7155-67. doi: 10.1158/0008-5472.CAN-11-1212. Epub 2011 Oct 17.
9
Targeting brain-tumor stem cells.
Nat Biotechnol. 2007 Feb;25(2):193-4. doi: 10.1038/nbt0207-193.
10
Radiation-induced extracellular vesicle (EV) release of miR-603 promotes IGF1-mediated stem cell state in glioblastomas.
EBioMedicine. 2020 May;55:102736. doi: 10.1016/j.ebiom.2020.102736. Epub 2020 Apr 28.

引用本文的文献

2
Biopterin metabolism and nitric oxide recoupling in cancer.
Front Oncol. 2024 Feb 26;13:1321326. doi: 10.3389/fonc.2023.1321326. eCollection 2023.
5
Gamma Irradiation Triggers Immune Escape in Glioma-Propagating Cells.
Cancers (Basel). 2022 May 31;14(11):2728. doi: 10.3390/cancers14112728.
6
Cascade-activatable NO release based on GSH-detonated "nanobomb" for multi-pathways cancer therapy.
Mater Today Bio. 2022 May 13;14:100288. doi: 10.1016/j.mtbio.2022.100288. eCollection 2022 Mar.
8
Aqueous extract from bark protects cells from oxidative stress caused by electron beam radiation: approach.
Heliyon. 2019 May 30;5(5):e01749. doi: 10.1016/j.heliyon.2019.e01749. eCollection 2019 May.
10
Irradiated endothelial cells modulate the malignancy of liver cancer cells.
Oncol Lett. 2019 Feb;17(2):2187-2196. doi: 10.3892/ol.2018.9833. Epub 2018 Dec 14.

本文引用的文献

1
Role of the IL-6-JAK1-STAT3-Oct-4 pathway in the conversion of non-stem cancer cells into cancer stem-like cells.
Cell Signal. 2013 Apr;25(4):961-9. doi: 10.1016/j.cellsig.2013.01.007. Epub 2013 Jan 16.
2
Generation of mouse and human induced pluripotent stem cells (iPSC) from primary somatic cells.
Stem Cell Rev Rep. 2013 Aug;9(4):435-50. doi: 10.1007/s12015-012-9412-5.
5
Glioma stem cell proliferation and tumor growth are promoted by nitric oxide synthase-2.
Cell. 2011 Jul 8;146(1):53-66. doi: 10.1016/j.cell.2011.06.006.
8
Selective targeting of radiation-resistant tumor-initiating cells.
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3522-7. doi: 10.1073/pnas.0910179107. Epub 2010 Feb 3.
9
DNA repair and resistance of gliomas to chemotherapy and radiotherapy.
Mol Cancer Res. 2009 Jul;7(7):989-99. doi: 10.1158/1541-7786.MCR-09-0030.
10
Nestin and CD133: valuable stem cell-specific markers for determining clinical outcome of glioma patients.
J Exp Clin Cancer Res. 2008 Dec 24;27(1):85. doi: 10.1186/1756-9966-27-85.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验