Max-Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany.
J Chem Phys. 2013 May 28;138(20):204101. doi: 10.1063/1.4804607.
A novel restricted-open-shell configuration interaction with singles (ROCIS) approach for the calculation of transition metal L-edge X-ray absorption spectra is introduced. In this method, one first calculates the ground state and a number of excited states of the non-relativistic Hamiltonian. By construction, the total spin is a good quantum number in each of these states. For a ground state with total spin S excited states with spin S' = S, S - 1, and S + 1 are constructed. Using Wigner-Eckart algebra, all magnetic sublevels with MS = S,..., -S for each multiplet of spin S are obtained. The spin-orbit operator is represented by a mean-field approximation to the full Breit-Pauli spin-orbit operator and is diagonalized over this N-particle basis. This is equivalent to a quasi-degenerate treatment of the spin-orbit interaction to all orders. Importantly, the excitation space spans all of the molecular multiplets that arise from the atomic Russell-Saunders terms. Hence, the method represents a rigorous first-principles approach to the complicated low-symmetry molecular multiplet problem met in L-edge X-ray absorption spectroscopy. In order to gain computational efficiency, as well as additional accuracy, the excitation space is restricted to single excitations and the configuration interaction matrix is slightly parameterized in order to account for dynamic correlation effects in an average way. To this end, it is advantageous to employ Kohn-Sham rather than Hartree-Fock orbitals thus defining the density functional theory∕ROCIS method. However, the method can also be used in an entirely non-empirical fashion. Only three global empirical parameters are introduced and have been determined here for future application of the method to any system containing any transition metal. The three parameters were carefully calibrated using the L-edge X-ray absorption spectroscopy spectra of a test set of coordination complexes containing first row transition metals. These parameters are universal and transferable. Hence, there are no adjustable parameters that are used to fit experimental X-ray absorption spectra. Thus, the new approach classifies as a predictive first-principles method rather than an analysis tool. A series of calculations on transition metal compounds containing Cu, Ti, Fe, and Ni in various oxidation and spin states is investigated and a detailed comparison to experimental data is reported. In most cases, the approach yields good to excellent agreement with experiment. In addition, the origin of the observed spectral features is discussed in terms of the electronic structure of the investigated compounds.
介绍了一种用于计算过渡金属 L 边 X 射线吸收光谱的新型限制开壳组态相互作用与单重态(ROCIS)方法。在这种方法中,首先计算非相对论哈密顿量的基态和一些激发态。通过构造,在这些态中的每一个中总自旋都是一个好的量子数。对于总自旋为 S 的基态,构建自旋 S' = S、S - 1 和 S + 1 的激发态。使用 Wigner-Eckart 代数,获得自旋 S 的每个多重态的所有磁亚能级 MS = S,...,-S。自旋轨道算子由全 Breit-Pauli 自旋轨道算子的平均场近似表示,并在这个 N 粒子基上对角化。这相当于对自旋轨道相互作用的所有阶进行准简并处理。重要的是,激发空间跨越了由原子 Russell-Saunders 项产生的所有分子多重态。因此,该方法代表了一种严格的第一性原理方法,用于解决 L 边 X 射线吸收光谱中遇到的复杂低对称分子多重态问题。为了获得计算效率以及额外的准确性,激发空间限制为单激发,并且配置相互作用矩阵稍微参数化,以便以平均方式考虑动态相关效应。为此,采用 Kohn-Sham 而不是 Hartree-Fock 轨道是有利的,从而定义了密度泛函理论∕ROCIS 方法。然而,该方法也可以完全非经验的方式使用。仅引入了三个全局经验参数,并已在这里确定,以便将来将该方法应用于任何包含过渡金属的系统。这三个参数是通过仔细校准第一行过渡金属配位化合物的 L 边 X 射线吸收光谱测试集确定的。这些参数是通用的和可转移的。因此,没有用于拟合实验 X 射线吸收光谱的可调参数。因此,新方法被归类为预测性第一性原理方法,而不是分析工具。研究了一系列含有 Cu、Ti、Fe 和 Ni 的过渡金属化合物,在各种氧化态和自旋态下的计算,并与实验数据进行了详细比较。在大多数情况下,该方法与实验吻合良好。此外,还根据所研究化合物的电子结构讨论了观察到的光谱特征的起源。