Suppr超能文献

ERG 通道 C 端结构及其功能意义。

Structure of the C-terminal region of an ERG channel and functional implications.

机构信息

Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA.

出版信息

Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11648-53. doi: 10.1073/pnas.1306887110. Epub 2013 Jun 25.

Abstract

The human ether-à-go-go-related gene (hERG) encodes a K(+) channel crucial for repolarization of the cardiac action potential. EAG-related gene (ERG) channels contain a C-terminal cyclic nucleotide-binding homology domain coupled to the pore of the channel by a C-linker. Here, we report the structure of the C-linker/cyclic nucleotide-binding homology domain of a mosquito ERG channel at 2.5-Å resolution. The structure reveals that the region expected to form the cyclic nucleotide-binding pocket is negatively charged and is occupied by a short β-strand, referred to as the intrinsic ligand, explaining the lack of direct regulation of ERG channels by cyclic nucleotides. In hERG channels, the intrinsic ligand harbors hereditary mutations associated with long-QT syndrome (LQTS), a potentially lethal cardiac arrhythmia. Mutations in the intrinsic ligand affected hERG channel gating and LQTS mutations abolished hERG currents and altered trafficking of hERG channels, which explains the LQT phenotype. The structure also reveals a dramatically different conformation of the C-linker compared with the structures of the related ether-à-go-go-like K(+) and hyperpolarization-activated cyclic nucleotide-modulated channels, suggesting that the C-linker region may be highly dynamic in the KCNH, hyperpolarization-activated cyclic nucleotide-modulated, and cyclic nucleotide-gated channels.

摘要

人类 EAG 相关基因(hERG)编码一种 K(+) 通道,对于心脏动作电位的复极化至关重要。EAG 相关基因(ERG)通道包含一个 C 末端环核苷酸结合同源结构域,通过 C 链接器与通道的孔相连。在这里,我们报告了 2.5-Å 分辨率的蚊子 ERG 通道的 C 链接器/环核苷酸结合同源结构域的结构。该结构揭示了预期形成环核苷酸结合口袋的区域带负电荷,并被一个短的 β-链占据,称为固有配体,这解释了 ERG 通道不受环核苷酸的直接调节。在 hERG 通道中,固有配体携带有与长 QT 综合征(LQTS)相关的遗传性突变,这是一种潜在致命的心律失常。固有配体的突变影响 hERG 通道门控,LQTS 突变会使 hERG 电流丧失,并改变 hERG 通道的运输,这解释了 LQT 表型。该结构还揭示了 C 链接器与相关的 EAG 样 K(+) 和超极化激活环核苷酸调制通道的结构相比,具有显著不同的构象,这表明 C 链接器区域在 KCNH、超极化激活环核苷酸调制和环核苷酸门控通道中可能具有高度的动态性。

相似文献

1
Structure of the C-terminal region of an ERG channel and functional implications.
Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11648-53. doi: 10.1073/pnas.1306887110. Epub 2013 Jun 25.
2
Structure of the carboxy-terminal region of a KCNH channel.
Nature. 2012 Jan 9;481(7382):530-3. doi: 10.1038/nature10735.
3
4
C-terminal β9-strand of the cyclic nucleotide-binding homology domain stabilizes activated states of Kv11.1 channels.
PLoS One. 2013 Oct 25;8(10):e77032. doi: 10.1371/journal.pone.0077032. eCollection 2013.
5
The structural mechanism of KCNH-channel regulation by the eag domain.
Nature. 2013 Sep 19;501(7467):444-8. doi: 10.1038/nature12487. Epub 2013 Aug 25.
6
Effect of S5P alpha-helix charge mutants on inactivation of hERG K+ channels.
J Physiol. 2006 Jun 1;573(Pt 2):291-304. doi: 10.1113/jphysiol.2006.108332. Epub 2006 Mar 23.
8
A recombinant N-terminal domain fully restores deactivation gating in N-truncated and long QT syndrome mutant hERG potassium channels.
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13082-7. doi: 10.1073/pnas.0900180106. Epub 2009 Jul 27.
9
Insight into the molecular interaction between the cyclic nucleotide-binding homology domain and the eag domain of the hERG channel.
FEBS Lett. 2014 Aug 25;588(17):2782-8. doi: 10.1016/j.febslet.2014.05.056. Epub 2014 Jun 12.

引用本文的文献

1
An Allosteric Model for Electromechanical Coupling in Cardiac CNBD Channels.
bioRxiv. 2025 Aug 1:2025.07.28.666606. doi: 10.1101/2025.07.28.666606.
2
GORK K channel structure and gating vital to informing stomatal engineering.
Nat Commun. 2025 Feb 25;16(1):1961. doi: 10.1038/s41467-025-57287-7.
3
Neurocardiac pathologies associated with potassium channelopathies.
Epilepsia. 2024 Sep;65(9):2537-2552. doi: 10.1111/epi.18066. Epub 2024 Aug 1.
4
Use of Surface Plasmon Resonance Technique for Studies of Inter-domain Interactions in Ion Channels.
Methods Mol Biol. 2024;2796:105-118. doi: 10.1007/978-1-0716-3818-7_7.
5
Photoinhibition of the hERG potassium channel PAS domain by ultraviolet light speeds channel closing.
Biophys J. 2024 Aug 20;123(16):2392-2405. doi: 10.1016/j.bpj.2024.05.024. Epub 2024 May 24.
6
Binding of RPR260243 at the intracellular side of the hERG1 channel pore domain slows closure of the helix bundle crossing gate.
Front Mol Biosci. 2023 Feb 23;10:1137368. doi: 10.3389/fmolb.2023.1137368. eCollection 2023.
7
Non-missense variants of KCNH2 show better outcomes in type 2 long QT syndrome.
Europace. 2023 Apr 15;25(4):1491-1499. doi: 10.1093/europace/euac269.
8
The ERG1 K Channel and Its Role in Neuronal Health and Disease.
Front Mol Neurosci. 2022 May 3;15:890368. doi: 10.3389/fnmol.2022.890368. eCollection 2022.
9
Conformation-sensitive antibody reveals an altered cytosolic PAS/CNBh assembly during hERG channel gating.
Proc Natl Acad Sci U S A. 2021 Nov 2;118(44). doi: 10.1073/pnas.2108796118.
10
Long QT syndrome - Bench to bedside.
Heart Rhythm O2. 2021 Jan 22;2(1):89-106. doi: 10.1016/j.hroo.2021.01.006. eCollection 2021 Feb.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Flavonoid regulation of EAG1 channels.
J Gen Physiol. 2013 Mar;141(3):347-58. doi: 10.1085/jgp.201210900.
3
HERG potassium channel regulation by the N-terminal eag domain.
Cell Signal. 2012 Aug;24(8):1592-8. doi: 10.1016/j.cellsig.2012.04.004. Epub 2012 Apr 13.
4
Structure of the carboxy-terminal region of a KCNH channel.
Nature. 2012 Jan 9;481(7382):530-3. doi: 10.1038/nature10735.
6
Improved molecular replacement by density- and energy-guided protein structure optimization.
Nature. 2011 May 26;473(7348):540-3. doi: 10.1038/nature09964. Epub 2011 May 1.
7
hERG potassium channel gating is mediated by N- and C-terminal region interactions.
J Gen Physiol. 2011 Mar;137(3):315-25. doi: 10.1085/jgp.201010582.
9
Deletion of the potassium channel Kv12.2 causes hippocampal hyperexcitability and epilepsy.
Nat Neurosci. 2010 Sep;13(9):1056-8. doi: 10.1038/nn.2610. Epub 2010 Aug 1.
10
PHENIX: a comprehensive Python-based system for macromolecular structure solution.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. doi: 10.1107/S0907444909052925. Epub 2010 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验