Suppr超能文献

双金属生长的多尺度碳微纳纤维作为生物传感器中酶固定化基质的发展。

Development of bimetal-grown multi-scale carbon micro-nanofibers as an immobilizing matrix for enzymes in biosensor applications.

机构信息

Department of Chemical Engineering, Indian Institute of Technology, Kanpur, India.

出版信息

Mater Sci Eng C Mater Biol Appl. 2013 Oct;33(7):4313-22. doi: 10.1016/j.msec.2013.06.030. Epub 2013 Jun 28.

Abstract

This study describes the development of a novel bimetal (Fe and Cu)-grown hierarchical web of carbon micro-nanofiber-based electrode for biosensor applications, in particular to detect glucose in liquids. Carbon nanofibers (CNFs) are grown on activated carbon microfibers (ACFs) by chemical vapor deposition (CVD) using Cu and Fe as the metal catalysts. The transition metal-fiber composite is used as the working electrode of a biosensor applied to detect glucose in liquids. In such a bi-nanometal-grown multi-scale web of ACF/CNF, Cu nanoparticles adhere to the ACF-surface, whereas Fe nanoparticles used to catalyze the growth of nanofibers attach to the CNF tips. By ultrasonication, Fe nanoparticles are dislodged from the tips of the CNFs. Glucose oxidase (GOx) is subsequently immobilized on the tips by adsorption. The dispersion of Cu nanoparticles at the substrate surface results in increased conductivity, facilitating electron transfer from the glucose solution to the ACF surface during the enzymatic reaction with glucose. The prepared Cu-ACF/CNF/GOx electrode is characterized for various surface and physicochemical properties by different analytical techniques, including scanning electron microscopy (SEM), electron dispersive X-ray analysis (EDX), Fourier-transform infrared spectroscopy (FTIR), BET surface area analysis, and transmission electron microscopy (TEM). The electrochemical tests show that the prepared electrode has fast response current, electrochemical stability, and high electron transfer rate, corroborated by CV and calibration curves. The prepared transition metal-based carbon electrode in this study is cost-effective, simple to develop, and has a stable immobilization matrix for enzymes.

摘要

本研究描述了一种新型双金属(Fe 和 Cu)生长的分层碳纤维微纳纤维基电极的开发,用于生物传感器应用,特别是用于检测液体中的葡萄糖。通过化学气相沉积(CVD),使用 Cu 和 Fe 作为金属催化剂,在活性炭微纤维(ACF)上生长碳纳米纤维(CNF)。将过渡金属纤维复合材料用作生物传感器的工作电极,用于检测液体中的葡萄糖。在这种 ACF/CNF 的双纳米金属生长的多尺度网络中,Cu 纳米颗粒附着在 ACF 表面,而用于催化纳米纤维生长的 Fe 纳米颗粒附着在 CNF 尖端。通过超声处理,Fe 纳米颗粒从 CNF 尖端脱落。随后,通过吸附将葡萄糖氧化酶(GOx)固定在尖端。Cu 纳米颗粒在基底表面的分散导致导电性增加,从而促进了在与葡萄糖的酶反应期间,葡萄糖溶液中的电子向 ACF 表面的转移。通过各种分析技术,包括扫描电子显微镜(SEM)、电子分散 X 射线分析(EDX)、傅里叶变换红外光谱(FTIR)、BET 表面积分析和透射电子显微镜(TEM),对制备的 Cu-ACF/CNF/GOx 电极进行了各种表面和物理化学性质的表征。电化学测试表明,所制备的电极具有快速响应电流、电化学稳定性和高电子转移率,这通过 CV 和校准曲线得到了证实。本研究中制备的基于过渡金属的碳电极具有成本效益、简单的开发过程和稳定的酶固定基质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验