Suppr超能文献

耦合的可逆和不可逆双稳态开关,构成 TGFβ 诱导的上皮间质转化的基础。

Coupled reversible and irreversible bistable switches underlying TGFβ-induced epithelial to mesenchymal transition.

机构信息

Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.

出版信息

Biophys J. 2013 Aug 20;105(4):1079-89. doi: 10.1016/j.bpj.2013.07.011.

Abstract

Epithelial to mesenchymal transition (EMT) plays an important role in embryonic development, tissue regeneration, and cancer metastasis. Whereas several feedback loops have been shown to regulate EMT, it remains elusive how they coordinately modulate EMT response to TGF-β treatment. We construct a mathematical model for the core regulatory network controlling TGF-β-induced EMT. Through deterministic analyses and stochastic simulations, we show that EMT is a sequential two-step program in which an epithelial cell first is converted to partial EMT then to the mesenchymal state, depending on the strength and duration of TGF-β stimulation. Mechanistically the system is governed by coupled reversible and irreversible bistable switches. The SNAIL1/miR-34 double-negative feedback loop is responsible for the reversible switch and regulates the initiation of EMT, whereas the ZEB/miR-200 feedback loop is accountable for the irreversible switch and controls the establishment of the mesenchymal state. Furthermore, an autocrine TGF-β/miR-200 feedback loop makes the second switch irreversible, modulating the maintenance of EMT. Such coupled bistable switches are robust to parameter variation and molecular noise. We provide a mechanistic explanation on multiple experimental observations. The model makes several explicit predictions on hysteretic dynamic behaviors, system response to pulsed stimulation, and various perturbations, which can be straightforwardly tested.

摘要

上皮-间充质转化 (EMT) 在胚胎发育、组织再生和癌症转移中起着重要作用。尽管已经显示出几个反馈回路可以调节 EMT,但它们如何协调调节 TGF-β 治疗诱导的 EMT 反应仍然难以捉摸。我们构建了一个用于控制 TGF-β 诱导的 EMT 的核心调控网络的数学模型。通过确定性分析和随机模拟,我们表明 EMT 是一个顺序的两步程序,其中上皮细胞首先被转化为部分 EMT,然后转化为间充质状态,这取决于 TGF-β 刺激的强度和持续时间。从机制上讲,该系统由耦合的可逆和不可逆双稳态开关控制。SNAIL1/miR-34 双阴性反馈回路负责可逆开关,调节 EMT 的起始,而 ZEB/miR-200 反馈回路负责不可逆开关,控制间充质状态的建立。此外,自分泌 TGF-β/miR-200 反馈回路使第二个开关不可逆,调节 EMT 的维持。这种耦合双稳态开关对参数变化和分子噪声具有鲁棒性。我们对多个实验观察结果提供了一种机制解释。该模型对滞后动态行为、系统对脉冲刺激的响应以及各种扰动做出了几个明确的预测,这些预测可以直接进行测试。

相似文献

2
An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition.
Mol Biol Cell. 2011 May 15;22(10):1686-98. doi: 10.1091/mbc.E11-02-0103. Epub 2011 Mar 16.
4
SNAIL driven by a feed forward loop motif promotes TGFinduced epithelial to mesenchymal transition.
Biomed Phys Eng Express. 2022 Jun 24;8(4). doi: 10.1088/2057-1976/ac7896.
9
MIR-99a and MIR-99b modulate TGF-β induced epithelial to mesenchymal plasticity in normal murine mammary gland cells.
PLoS One. 2012;7(1):e31032. doi: 10.1371/journal.pone.0031032. Epub 2012 Jan 27.
10
A novel network integrating a miRNA-203/SNAI1 feedback loop which regulates epithelial to mesenchymal transition.
PLoS One. 2012;7(4):e35440. doi: 10.1371/journal.pone.0035440. Epub 2012 Apr 13.

引用本文的文献

1
Network motifs and hypermotifs in TGFβ-induced epithelial to mesenchymal transition and metastasis.
Front Syst Biol. 2023 Mar 3;3:1099951. doi: 10.3389/fsysb.2023.1099951. eCollection 2023.
3
Transiently increased coordination in gene regulation during cell phenotypic transitions.
PRX Life. 2024 Dec;2(4). doi: 10.1103/prxlife.2.043009. Epub 2024 Nov 5.
4
CRISPRi-Linked Multi-Module Negative Feedback Loops to Address Winner-Take-All Resource Competition.
bioRxiv. 2025 May 16:2025.05.15.654351. doi: 10.1101/2025.05.15.654351.
5
SOX10, MITF, and microRNAs: Decoding their interplay in regulating melanoma plasticity.
Int J Cancer. 2025 Oct 1;157(7):1277-1293. doi: 10.1002/ijc.35499. Epub 2025 Jun 3.
6
Transition paths across the EMT landscape are dictated by network logic.
Development. 2025 May 21. doi: 10.1242/dev.204583.
7
Integrated mathematical and experimental modeling uncovers enhanced EMT plasticity upon loss of the DLC1 tumor suppressor.
PLoS Comput Biol. 2025 May 12;21(5):e1013076. doi: 10.1371/journal.pcbi.1013076. eCollection 2025 May.
8
A Boolean network model of hypoxia, mechanosensing and TGF-β signaling captures the role of phenotypic plasticity and mutations in tumor metastasis.
PLoS Comput Biol. 2025 Apr 16;21(4):e1012735. doi: 10.1371/journal.pcbi.1012735. eCollection 2025 Apr.
9
Modeling the dynamics of EMT reveals genes associated with pan-cancer intermediate states and plasticity.
NPJ Syst Biol Appl. 2025 Apr 10;11(1):31. doi: 10.1038/s41540-025-00512-2.
10
Gene regulatory network inference during cell fate decisions by perturbation strategies.
NPJ Syst Biol Appl. 2025 Mar 4;11(1):23. doi: 10.1038/s41540-025-00504-2.

本文引用的文献

1
Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs.
Curr Opin Cell Biol. 2013 Apr;25(2):200-7. doi: 10.1016/j.ceb.2013.01.008. Epub 2013 Feb 20.
2
Critical regulation of miR-200/ZEB2 pathway in Oct4/Sox2-induced mesenchymal-to-epithelial transition and induced pluripotent stem cell generation.
Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):2858-63. doi: 10.1073/pnas.1212769110. Epub 2013 Feb 5.
3
Regulatory networks defining EMT during cancer initiation and progression.
Nat Rev Cancer. 2013 Feb;13(2):97-110. doi: 10.1038/nrc3447.
4
MicroRNAs in the p53 network: micromanagement of tumour suppression.
Nat Rev Cancer. 2012 Sep;12(9):613-26. doi: 10.1038/nrc3318. Epub 2012 Aug 17.
5
A two-step mechanism for cell fate decision by coordination of nuclear and mitochondrial p53 activities.
PLoS One. 2012;7(6):e38164. doi: 10.1371/journal.pone.0038164. Epub 2012 Jun 5.
6
Cadherin switch from E- to N-cadherin in melanoma progression is regulated by the PI3K/PTEN pathway through Twist and Snail.
Br J Dermatol. 2012 Jun;166(6):1184-97. doi: 10.1111/j.1365-2133.2012.10824.x. Epub 2012 May 8.
8
miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions.
Cell Cycle. 2011 Dec 15;10(24):4256-71. doi: 10.4161/cc.10.24.18552.
9
Trafficking coordinate description of intracellular transport control of signaling networks.
Biophys J. 2011 Nov 16;101(10):2315-23. doi: 10.1016/j.bpj.2011.09.035. Epub 2011 Nov 15.
10
A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition.
J Cell Biol. 2011 Oct 31;195(3):417-33. doi: 10.1083/jcb.201103097. Epub 2011 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验