Suppr超能文献

综合生理学和计算方法理解自主控制脑自动调节。

Integrative physiological and computational approaches to understand autonomic control of cerebral autoregulation.

机构信息

C. O. Tan: CVLab, SW052, Spaulding Hospital Cambridge, 1575 Cambridge Street, Cambridge, MA 02138, USA.

出版信息

Exp Physiol. 2014 Jan;99(1):3-15. doi: 10.1113/expphysiol.2013.072355. Epub 2013 Oct 4.

Abstract

The brain requires steady delivery of oxygen and glucose, without which neurodegeneration occurs within minutes. Thus, the ability of the cerebral vasculature to maintain relatively steady blood flow in the face of changing systemic pressure, i.e. cerebral autoregulation, is critical to neurophysiological health. Although the study of autoregulation dates to the early 20th century, only the recent availability of cerebral blood flow measures with high temporal resolution has allowed rapid, beat-by-beat measurements to explore the characteristics and mechanisms of autoregulation. These explorations have been further enhanced by the ability to apply sophisticated computational approaches that exploit the large amounts of data that can be acquired. These advances have led to unique insights. For example, recent studies have revealed characteristic time scales wherein cerebral autoregulation is most active, as well as specific regions wherein autonomic mechanisms are prepotent. However, given that effective cerebral autoregulation against pressure fluctuations results in relatively unchanging flow despite changing pressure, estimating the pressure-flow relationship can be limited by the error inherent in computational models of autoregulatory function. This review focuses on the autonomic neural control of the cerebral vasculature in health and disease from an integrative physiological perspective. It also provides a critical overview of the current analytical approaches to understand cerebral autoregulation.

摘要

大脑需要稳定的氧气和葡萄糖供应,否则神经退行性病变会在数分钟内发生。因此,脑血管在面对全身血压变化时保持相对稳定血流的能力(即脑自动调节)对神经生理健康至关重要。尽管自动调节的研究可以追溯到 20 世纪初,但只有最近能够以高时间分辨率测量脑血流,才能够进行快速的逐拍测量,以探索自动调节的特征和机制。这些探索进一步得益于应用复杂计算方法的能力,这些方法利用了可以获取的大量数据。这些进展带来了独特的见解。例如,最近的研究揭示了脑自动调节最活跃的特征时间尺度,以及自主机制占优势的特定区域。然而,由于有效的针对压力波动的脑自动调节会导致尽管压力变化但流量相对不变,因此,估计压力-流量关系可能会受到自动调节功能计算模型固有的误差限制。这篇综述从综合生理学的角度关注健康和疾病状态下脑血管的自主神经控制。它还批判性地概述了目前用于理解脑自动调节的分析方法。

相似文献

1
Integrative physiological and computational approaches to understand autonomic control of cerebral autoregulation.
Exp Physiol. 2014 Jan;99(1):3-15. doi: 10.1113/expphysiol.2013.072355. Epub 2013 Oct 4.
2
Autonomic dysfunction affects dynamic cerebral autoregulation during Valsalva maneuver: comparison between healthy and autonomic dysfunction subjects.
J Appl Physiol (1985). 2014 Aug 1;117(3):205-13. doi: 10.1152/japplphysiol.00893.2013. Epub 2014 Jun 12.
3
Relative contributions of sympathetic, cholinergic, and myogenic mechanisms to cerebral autoregulation.
Stroke. 2014 Jun;45(6):1771-7. doi: 10.1161/STROKEAHA.114.005293. Epub 2014 Apr 10.
4
Autonomic neural control of dynamic cerebral autoregulation in humans.
Circulation. 2002 Oct 1;106(14):1814-20. doi: 10.1161/01.cir.0000031798.07790.fe.
5
Multimodality monitoring during passive tilt and Valsalva maneuver under hypercapnia.
J Neuroimaging. 1999 Apr;9(2):108-12. doi: 10.1111/jon199992108.
6
Integrative regulation of human brain blood flow.
J Physiol. 2014 Mar 1;592(5):841-59. doi: 10.1113/jphysiol.2013.268953. Epub 2014 Jan 6.
7
Defining the characteristic relationship between arterial pressure and cerebral flow.
J Appl Physiol (1985). 2012 Oct 15;113(8):1194-200. doi: 10.1152/japplphysiol.00783.2012. Epub 2012 Sep 6.
8
Transcranial Doppler assessment of cerebral autoregulation.
Ultrasound Med Biol. 2009 Jun;35(6):883-93. doi: 10.1016/j.ultrasmedbio.2009.01.005. Epub 2009 Mar 28.
9
Nonlinear, multiple-input modeling of cerebral autoregulation using Volterra Kernel estimation.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:2375-8. doi: 10.1109/IEMBS.2010.5627266.

引用本文的文献

1
A Comprehensive Review of Fluid Resuscitation Strategies in Traumatic Brain Injury.
J Clin Med. 2025 Sep 5;14(17):6289. doi: 10.3390/jcm14176289.
3
Cerebral hemodynamic response to upright position in acute ischemic stroke.
Front Neurol. 2024 Jul 11;15:1392773. doi: 10.3389/fneur.2024.1392773. eCollection 2024.
4
Application of transcranial Doppler in cerebrovascular diseases.
Front Aging Neurosci. 2022 Nov 8;14:1035086. doi: 10.3389/fnagi.2022.1035086. eCollection 2022.
5
Dynamic effects of cholinergic blockade upon cerebral blood flow autoregulation in healthy adults.
Front Physiol. 2022 Nov 2;13:1015544. doi: 10.3389/fphys.2022.1015544. eCollection 2022.
6
Changes in neurovascular coupling with cerebral perfusion pressure indicate a link to cerebral autoregulation.
J Cereb Blood Flow Metab. 2022 Jul;42(7):1247-1258. doi: 10.1177/0271678X221076566. Epub 2022 Jan 25.
8
Editorial: Imaging Cerebrovascular Reactivity: Physiology, Physics and Therapy.
Front Physiol. 2021 Aug 13;12:740792. doi: 10.3389/fphys.2021.740792. eCollection 2021.
9
Control of Cerebral Blood Flow by Blood Gases.
Front Physiol. 2021 Feb 18;12:640075. doi: 10.3389/fphys.2021.640075. eCollection 2021.

本文引用的文献

1
The role of myogenic mechanisms in human cerebrovascular regulation.
J Physiol. 2013 Oct 15;591(20):5095-105. doi: 10.1113/jphysiol.2013.259747. Epub 2013 Aug 19.
2
Dynamic cerebral autoregulation in acute intracerebral hemorrhage.
Stroke. 2013 Oct;44(10):2722-8. doi: 10.1161/STROKEAHA.113.001913. Epub 2013 Aug 13.
3
Blood pressure regulation IX: cerebral autoregulation under blood pressure challenges.
Eur J Appl Physiol. 2014 Mar;114(3):545-59. doi: 10.1007/s00421-013-2667-y. Epub 2013 Jun 5.
4
Clinical relevance of cerebral autoregulation following subarachnoid haemorrhage.
Nat Rev Neurol. 2013 Mar;9(3):152-63. doi: 10.1038/nrneurol.2013.11. Epub 2013 Feb 19.
6
Cholinergic control of the cerebral vasculature in humans.
J Physiol. 2012 Dec 15;590(24):6343-52. doi: 10.1113/jphysiol.2012.245100. Epub 2012 Oct 15.
7
Defining the characteristic relationship between arterial pressure and cerebral flow.
J Appl Physiol (1985). 2012 Oct 15;113(8):1194-200. doi: 10.1152/japplphysiol.00783.2012. Epub 2012 Sep 6.
8
Assessment of cerebral autoregulation: the quandary of quantification.
Am J Physiol Heart Circ Physiol. 2012 Sep 15;303(6):H658-71. doi: 10.1152/ajpheart.00328.2012. Epub 2012 Jul 20.
9
Donepezil and memantine for moderate-to-severe Alzheimer's disease.
N Engl J Med. 2012 Mar 8;366(10):893-903. doi: 10.1056/NEJMoa1106668.
10
Autonomic dysfunction affects cerebral neurovascular coupling.
Clin Auton Res. 2011 Dec;21(6):395-403. doi: 10.1007/s10286-011-0129-3. Epub 2011 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验