Suppr超能文献

人类脑血流的整合调节

Integrative regulation of human brain blood flow.

作者信息

Willie Christopher K, Tzeng Yu-Chieh, Fisher Joseph A, Ainslie Philip N

机构信息

Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada V1V 1V7.

出版信息

J Physiol. 2014 Mar 1;592(5):841-59. doi: 10.1113/jphysiol.2013.268953. Epub 2014 Jan 6.

Abstract

Herein, we review mechanisms regulating cerebral blood flow (CBF), with specific focus on humans. We revisit important concepts from the older literature and describe the interaction of various mechanisms of cerebrovascular control. We amalgamate this broad scope of information into a brief review, rather than detailing any one mechanism or area of research. The relationship between regulatory mechanisms is emphasized, but the following three broad categories of control are explicated: (1) the effect of blood gases and neuronal metabolism on CBF; (2) buffering of CBF with changes in blood pressure, termed cerebral autoregulation; and (3) the role of the autonomic nervous system in CBF regulation. With respect to these control mechanisms, we provide evidence against several canonized paradigms of CBF control. Specifically, we corroborate the following four key theses: (1) that cerebral autoregulation does not maintain constant perfusion through a mean arterial pressure range of 60-150 mmHg; (2) that there is important stimulatory synergism and regulatory interdependence of arterial blood gases and blood pressure on CBF regulation; (3) that cerebral autoregulation and cerebrovascular sensitivity to changes in arterial blood gases are not modulated solely at the pial arterioles; and (4) that neurogenic control of the cerebral vasculature is an important player in autoregulatory function and, crucially, acts to buffer surges in perfusion pressure. Finally, we summarize the state of our knowledge with respect to these areas, outline important gaps in the literature and suggest avenues for future research.

摘要

在此,我们回顾调节脑血流量(CBF)的机制,特别关注人类。我们重新审视早期文献中的重要概念,并描述脑血管控制的各种机制之间的相互作用。我们将这一广泛的信息整合为一篇简短的综述,而非详细阐述任何一种机制或研究领域。我们强调调节机制之间的关系,但阐述以下三大类控制:(1)血气和神经元代谢对CBF的影响;(2)随着血压变化对CBF进行缓冲,即所谓的脑自动调节;(3)自主神经系统在CBF调节中的作用。关于这些控制机制,我们提供证据反驳CBF控制的几个公认范式。具体而言,我们证实以下四个关键论点:(1)脑自动调节在平均动脉压60 - 150 mmHg范围内并不能维持恒定灌注;(2)动脉血气和血压在CBF调节中存在重要的刺激协同作用和调节相互依赖性;(3)脑自动调节和脑血管对动脉血气变化的敏感性并非仅在软脑膜小动脉处受到调节;(4)脑血管的神经源性控制在自动调节功能中是一个重要因素,并且至关重要的是,它起到缓冲灌注压波动的作用。最后,我们总结这些领域的知识现状,概述文献中的重要空白,并提出未来研究的方向。

相似文献

1
Integrative regulation of human brain blood flow.
J Physiol. 2014 Mar 1;592(5):841-59. doi: 10.1113/jphysiol.2013.268953. Epub 2014 Jan 6.
2
Autonomic neural control of dynamic cerebral autoregulation in humans.
Circulation. 2002 Oct 1;106(14):1814-20. doi: 10.1161/01.cir.0000031798.07790.fe.
3
Multimodality monitoring during passive tilt and Valsalva maneuver under hypercapnia.
J Neuroimaging. 1999 Apr;9(2):108-12. doi: 10.1111/jon199992108.
5
Cerebral blood flow during exercise: mechanisms of regulation.
J Appl Physiol (1985). 2009 Nov;107(5):1370-80. doi: 10.1152/japplphysiol.00573.2009. Epub 2009 Sep 3.
6
Regulation of cerebral blood flow and metabolism during exercise.
Exp Physiol. 2017 Nov 1;102(11):1356-1371. doi: 10.1113/EP086249. Epub 2017 Sep 30.
7
Modeling cerebral blood flow and regulation.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:5470-3. doi: 10.1109/IEMBS.2009.5334057.
9
Regulation of cerebral blood flow in mammals during chronic hypoxia: a matter of balance.
Exp Physiol. 2010 Feb;95(2):251-62. doi: 10.1113/expphysiol.2008.045575. Epub 2009 Jul 17.
10
Autonomic control of cerebral circulation: exercise.
Med Sci Sports Exerc. 2008 Dec;40(12):2046-54. doi: 10.1249/MSS.0b013e318180bc6f.

引用本文的文献

2
Cerebral Resistance Artery Histological Remodeling After Training-Sex Differences.
Life (Basel). 2025 Aug 17;15(8):1304. doi: 10.3390/life15081304.
5
Cerebral blood flow is associated with plasma and PET biomarkers of tau pathology in middle age.
Brain Commun. 2025 Jun 19;7(4):fcaf249. doi: 10.1093/braincomms/fcaf249. eCollection 2025.
6
Management of non-Cardiac Organ Failure in cardiogenic shock.
Am Heart J Plus. 2025 May 1;55:100549. doi: 10.1016/j.ahjo.2025.100549. eCollection 2025 Jul.
7
Latent class growth analysis of dynamic PaCo patterns and clinical outcomes in acute brain injury.
Sci Rep. 2025 May 30;15(1):19100. doi: 10.1038/s41598-025-04793-9.
10
Hypoxia in multiple sclerosis.
Redox Biol. 2025 Jun;83:103666. doi: 10.1016/j.redox.2025.103666. Epub 2025 May 6.

本文引用的文献

1
The oxygen paradox of neurovascular coupling.
J Cereb Blood Flow Metab. 2014 Jan;34(1):19-29. doi: 10.1038/jcbfm.2013.181. Epub 2013 Oct 23.
2
Nonstationarity of dynamic cerebral autoregulation.
Med Eng Phys. 2014 May;36(5):576-84. doi: 10.1016/j.medengphy.2013.09.004. Epub 2013 Oct 7.
3
Integrative physiological and computational approaches to understand autonomic control of cerebral autoregulation.
Exp Physiol. 2014 Jan;99(1):3-15. doi: 10.1113/expphysiol.2013.072355. Epub 2013 Oct 4.
4
Measuring cerebrovascular reactivity: what stimulus to use?
J Physiol. 2013 Dec 1;591(23):5809-21. doi: 10.1113/jphysiol.2013.259150. Epub 2013 Sep 30.
5
Assessment and prognostic relevance of right ventricular contractile reserve in patients with severe pulmonary hypertension.
Circulation. 2013 Oct 29;128(18):2005-15. doi: 10.1161/CIRCULATIONAHA.113.001573. Epub 2013 Sep 20.
6
Cerebral autoregulation of blood velocity and volumetric flow during steady-state changes in arterial pressure.
Hypertension. 2013 Nov;62(5):973-9. doi: 10.1161/HYPERTENSIONAHA.113.01867. Epub 2013 Sep 16.
7
The role of myogenic mechanisms in human cerebrovascular regulation.
J Physiol. 2013 Oct 15;591(20):5095-105. doi: 10.1113/jphysiol.2013.259747. Epub 2013 Aug 19.
8
Regional cerebral blood flow in humans at high altitude: gradual ascent and 2 wk at 5,050 m.
J Appl Physiol (1985). 2014 Apr 1;116(7):905-10. doi: 10.1152/japplphysiol.00594.2013. Epub 2013 Jun 27.
9
Differential cerebrovascular CO₂ reactivity in anterior and posterior cerebral circulations.
Respir Physiol Neurobiol. 2013 Oct 1;189(1):76-86. doi: 10.1016/j.resp.2013.05.036. Epub 2013 Jun 14.
10
Middle cerebral O₂ delivery during the modified Oxford maneuver increases with sodium nitroprusside and decreases during phenylephrine.
Am J Physiol Heart Circ Physiol. 2013 Jun 1;304(11):H1576-83. doi: 10.1152/ajpheart.00114.2013. Epub 2013 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验