Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA.
J Virol. 2013 Dec;87(24):13579-88. doi: 10.1128/JVI.02629-13. Epub 2013 Oct 9.
Rotavirus nonstructural protein 4 (NSP4) induces dramatic changes in cellular calcium homeostasis. These include increased endoplasmic reticulum (ER) permeability, resulting in decreased ER calcium stores and activation of plasma membrane (PM) calcium influx channels, ultimately causing a 2- to 4-fold elevation in cytoplasmic calcium. Elevated cytoplasmic calcium is absolutely required for virus replication, but the underlying mechanisms responsible for calcium influx remain poorly understood. NSP4 is an ER-localized viroporin, whose activity depletes ER calcium, which ultimately leads to calcium influx. We hypothesized that NSP4-mediated depletion of ER calcium activates store-operated calcium entry (SOCE) through activation of the ER calcium sensor stromal interaction molecule 1 (STIM1). We established and used a stable yellow fluorescent protein-expressing STIM1 cell line (YFP-STIM1) as a biosensor to assess STIM1 activation (puncta formation) by rotavirus infection and NSP4 expression. We found that STIM1 is constitutively active in rotavirus-infected cells and that STIM1 puncta colocalize with the PM-localized Orai1 SOCE calcium channel. Expression of wild-type NSP4 activated STIM1, resulting in PM calcium influx, but an NSP4 viroporin mutant failed to induce STIM1 activation and did not activate the PM calcium entry pathway. Finally, knockdown of STIM1 significantly reduced rotavirus yield, indicating STIM1 plays a critical role in virus replication. These data demonstrate that while rotavirus may ultimately activate multiple calcium channels in the PM, calcium influx is predicated on NSP4 viroporin-mediated activation of STIM1 in the ER. This is the first report of viroporin-mediated activation of SOCE, reinforcing NSP4 as a robust model to understand dysregulation of calcium homeostasis during virus infections.
轮状病毒非结构蛋白 4(NSP4)引起细胞钙稳态的剧烈变化。这些变化包括内质网(ER)通透性增加,导致 ER 钙库减少和质膜(PM)钙流入通道激活,最终导致细胞质钙增加 2-4 倍。细胞质钙的升高对于病毒复制是绝对必需的,但是导致钙流入的潜在机制仍知之甚少。NSP4 是一种 ER 定位的病毒孔蛋白,其活性耗尽 ER 钙,最终导致钙流入。我们假设 NSP4 介导的 ER 钙耗竭通过激活 ER 钙传感器基质相互作用分子 1(STIM1)激活储存操作钙进入(SOCE)。我们建立并使用稳定表达黄色荧光蛋白的 STIM1 细胞系(YFP-STIM1)作为生物传感器,以评估轮状病毒感染和 NSP4 表达对 STIM1 激活(斑点形成)的影响。我们发现 STIM1 在轮状病毒感染的细胞中是固有激活的,并且 STIM1 斑点与质膜定位的 Orai1 SOCE 钙通道共定位。野生型 NSP4 的表达激活了 STIM1,导致 PM 钙流入,但 NSP4 病毒孔蛋白突变体不能诱导 STIM1 激活,也不能激活 PM 钙进入途径。最后,STIM1 的敲低显著降低了轮状病毒的产量,表明 STIM1 在病毒复制中起着关键作用。这些数据表明,虽然轮状病毒最终可能在 PM 中激活多个钙通道,但钙流入是基于 NSP4 病毒孔蛋白介导的 ER 中 STIM1 的激活。这是病毒孔蛋白介导的 SOCE 激活的第一个报道,强化了 NSP4 作为理解病毒感染期间钙稳态失调的强大模型。