Suppr超能文献

利用斑马鱼进行多维体内危害评估。

Multidimensional in vivo hazard assessment using zebrafish.

机构信息

* Department of Environmental and Molecular Toxicology, the Sinnhuber Aquatic Research Laboratory and the Environmental Health Sciences Center at Oregon State University, Corvallis, Oregon 97333.

出版信息

Toxicol Sci. 2014 Jan;137(1):212-33. doi: 10.1093/toxsci/kft235. Epub 2013 Oct 17.

Abstract

There are tens of thousands of man-made chemicals in the environment; the inherent safety of most of these chemicals is not known. Relevant biological platforms and new computational tools are needed to prioritize testing of chemicals with limited human health hazard information. We describe an experimental design for high-throughput characterization of multidimensional in vivo effects with the power to evaluate trends relating to commonly cited chemical predictors. We evaluated all 1060 unique U.S. EPA ToxCast phase 1 and 2 compounds using the embryonic zebrafish and found that 487 induced significant adverse biological responses. The utilization of 18 simultaneously measured endpoints means that the entire system serves as a robust biological sensor for chemical hazard. The experimental design enabled us to describe global patterns of variation across tested compounds, evaluate the concordance of the available in vitro and in vivo phase 1 data with this study, highlight specific mechanisms/value-added/novel biology related to notochord development, and demonstrate that the developmental zebrafish detects adverse responses that would be missed by less comprehensive testing strategies.

摘要

环境中存在数万种人工化学品;这些化学物质的大多数固有安全性尚不清楚。需要相关的生物平台和新的计算工具,以便优先对具有有限人类健康危害信息的化学品进行测试。我们描述了一种高通量表征多维体内效应的实验设计,该设计具有评估与常见引用的化学预测因子相关趋势的能力。我们使用胚胎斑马鱼评估了美国环保署 ToxCast 第 1 阶段和第 2 阶段的 1060 种独特化合物,发现其中 487 种诱导了显著的不良生物学反应。18 个同时测量的终点的利用意味着整个系统是化学危害的强大生物传感器。该实验设计使我们能够描述测试化合物之间的整体变化模式,评估现有体外和体内第 1 阶段数据与本研究的一致性,突出与脊索发育相关的特定机制/附加值/新生物学,并证明发育中的斑马鱼可以检测到更全面的测试策略可能会遗漏的不良反应。

相似文献

1
Multidimensional in vivo hazard assessment using zebrafish.
Toxicol Sci. 2014 Jan;137(1):212-33. doi: 10.1093/toxsci/kft235. Epub 2013 Oct 17.
3
Screening for angiogenic inhibitors in zebrafish to evaluate a predictive model for developmental vascular toxicity.
Reprod Toxicol. 2017 Jun;70:70-81. doi: 10.1016/j.reprotox.2016.12.004. Epub 2016 Dec 19.
5
Developmental toxicity assay using high content screening of zebrafish embryos.
J Appl Toxicol. 2015 Mar;35(3):261-72. doi: 10.1002/jat.3029. Epub 2014 May 28.
7
Zebrafish: as an integrative model for twenty-first century toxicity testing.
Birth Defects Res C Embryo Today. 2011 Sep;93(3):256-67. doi: 10.1002/bdrc.20214.
8
Assessment of the developmental neurotoxicity of compounds by measuring locomotor activity in zebrafish embryos and larvae.
Neurotoxicol Teratol. 2013 May-Jun;37:44-56. doi: 10.1016/j.ntt.2013.01.003. Epub 2013 Jan 26.
9
Developmental neurotoxicity of maneb: Notochord defects, mitochondrial dysfunction and hypoactivity in zebrafish (Danio rerio) embryos and larvae.
Ecotoxicol Environ Saf. 2019 Apr 15;170:227-237. doi: 10.1016/j.ecoenv.2018.11.110. Epub 2018 Dec 6.
10
The ToxCast program for prioritizing toxicity testing of environmental chemicals.
Toxicol Sci. 2007 Jan;95(1):5-12. doi: 10.1093/toxsci/kfl103. Epub 2006 Sep 8.

引用本文的文献

1
Leveraging Zebrafish Embryo Phenotypic Observations to Advance Data-Driven Analyses in Toxicology.
Environ Sci Technol. 2025 Mar 11;59(9):4304-4317. doi: 10.1021/acs.est.4c11757. Epub 2025 Feb 27.
2
Zebrafish: A Cost-Effective Model for Enhanced Forensic Toxicology Capabilities in Low- and Middle-Income Countries.
Cureus. 2024 Dec 22;16(12):e76223. doi: 10.7759/cureus.76223. eCollection 2024 Dec.
3
Teratogenicity, cardiac toxicity, neurotoxicity and genotoxicity in zebrafish embryo-larvae exposed to 4-bromodiphenyl ether.
Toxicol Res (Camb). 2025 Jan 7;14(1):tfae228. doi: 10.1093/toxres/tfae228. eCollection 2025 Jan.
4
Accelerating antiviral drug discovery: early hazard detection with a dual zebrafish and cell culture screen of a 403 compound library.
Arch Toxicol. 2025 Mar;99(3):1029-1041. doi: 10.1007/s00204-024-03948-3. Epub 2024 Dec 27.
5
Developmental toxicity of alkylated PAHs and substituted phenanthrenes: Structural nuances drive diverse toxicity and AHR activation.
Chemosphere. 2025 Feb;370:143894. doi: 10.1016/j.chemosphere.2024.143894. Epub 2024 Dec 10.
6
An integrated approach to evaluating water contaminants and evaporation in agricultural water distribution systems.
Ecotoxicol Environ Saf. 2024 Nov 15;287:117277. doi: 10.1016/j.ecoenv.2024.117277. Epub 2024 Nov 7.
8
Deep autoencoder-based behavioral pattern recognition outperforms standard statistical methods in high-dimensional zebrafish studies.
PLoS Comput Biol. 2024 Sep 10;20(9):e1012423. doi: 10.1371/journal.pcbi.1012423. eCollection 2024 Sep.
9
Aryl hydrocarbon receptor-dependent toxicity by retene requires metabolic competence.
Toxicol Sci. 2024 Nov 1;202(1):50-68. doi: 10.1093/toxsci/kfae098.
10
Diverse PFAS produce unique transcriptomic changes linked to developmental toxicity in zebrafish.
Front Toxicol. 2024 Jul 22;6:1425537. doi: 10.3389/ftox.2024.1425537. eCollection 2024.

本文引用的文献

1
The zebrafish reference genome sequence and its relationship to the human genome.
Nature. 2013 Apr 25;496(7446):498-503. doi: 10.1038/nature12111. Epub 2013 Apr 17.
2
Zebrafish embryos as an alternative model for screening of drug-induced organ toxicity.
Arch Toxicol. 2013 May;87(5):767-9. doi: 10.1007/s00204-013-1044-2. Epub 2013 Mar 30.
3
Hooked! Modeling human disease in zebrafish.
J Clin Invest. 2012 Jul;122(7):2337-43. doi: 10.1172/JCI60434. Epub 2012 Jul 2.
5
Developmental exposure to valproate and ethanol alters locomotor activity and retino-tectal projection area in zebrafish embryos.
Reprod Toxicol. 2012 Apr;33(2):165-73. doi: 10.1016/j.reprotox.2011.11.111. Epub 2012 Jan 5.
6
Zebrafish developmental screening of the ToxCast™ Phase I chemical library.
Reprod Toxicol. 2012 Apr;33(2):174-87. doi: 10.1016/j.reprotox.2011.10.018. Epub 2011 Dec 9.
7
Neurodevelopmental low-dose bisphenol A exposure leads to early life-stage hyperactivity and learning deficits in adult zebrafish.
Toxicology. 2012 Jan 27;291(1-3):83-92. doi: 10.1016/j.tox.2011.11.001. Epub 2011 Nov 15.
8
Persistent adult zebrafish behavioral deficits results from acute embryonic exposure to gold nanoparticles.
Comp Biochem Physiol C Toxicol Pharmacol. 2012 Mar;155(2):269-74. doi: 10.1016/j.cbpc.2011.09.006. Epub 2011 Sep 17.
10
Evaluation of embryotoxicity using the zebrafish model.
Methods Mol Biol. 2011;691:271-9. doi: 10.1007/978-1-60761-849-2_16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验