Department of Chemical Engineering and Materials Science, University of Minnesota , 421 Washington Avenue SE, Minneapolis, Minnesota, 55455, United States.
ACS Nano. 2013 Nov 26;7(11):10245-56. doi: 10.1021/nn4045694. Epub 2013 Oct 31.
We have examined the significant enhancement of ambipolar charge injection and transport properties of bottom-contact single crystal field-effect transistors (SC-FETs) based on a new rubrene derivative, bis(trifluoromethyl)-dimethyl-rubrene (fm-rubrene), by employing carbon nanotube (CNT) electrodes. The fundamental challenge associated with fm-rubrene crystals is their deep-lying HOMO and LUMO energy levels, resulting in inefficient hole injection and suboptimal electron injection from conventional Au electrodes due to large Schottky barriers. Applying thin layers of CNT network at the charge injection interface of fm-rubrene crystals substantially reduces the contact resistance for both holes and electrons; consequently, benchmark ambipolar mobilities have been achieved, reaching 4.8 cm(2) V(-1) s(-1) for hole transport and 4.2 cm(2) V(-1) s(-1) for electron transport. We find that such improved injection efficiency in fm-rubrene is beneficial for ultimately unveiling its intrinsic charge transport properties so as to exceed those of its parent molecule, rubrene, in the current device architecture. Our studies suggest that CNT electrodes may provide a universal approach to ameliorate the charge injection obstacles in organic electronic devices regardless of charge carrier type, likely due to the electric field enhancement along the nanotube located at the crystal/electrode interface.
我们研究了基于新的并五苯衍生物双(三氟甲基)-二甲并五苯(fm-rubrene)的底接触单晶场效应晶体管(SC-FET)的双极性电荷注入和输运性能的显著增强,使用了碳纳米管(CNT)电极。与 fm-rubrene 晶体相关的基本挑战是其深的 HOMO 和 LUMO 能级,由于大的肖特基势垒,导致从传统的 Au 电极注入空穴的效率低,电子注入不理想。在 fm-rubrene 晶体的电荷注入界面施加薄层 CNT 网络,可显著降低空穴和电子的接触电阻;因此,实现了基准双极性迁移率,空穴传输达到 4.8 cm(2) V(-1) s(-1),电子传输达到 4.2 cm(2) V(-1) s(-1)。我们发现,fm-rubrene 中这种注入效率的提高有利于最终揭示其内在的电荷输运特性,从而在当前的器件结构中超过其母体分子并五苯。我们的研究表明,CNT 电极可能为改善有机电子器件中的电荷注入障碍提供一种通用方法,而与电荷载流子类型无关,这可能是由于位于晶体/电极界面的纳米管沿电场增强所致。