Yuvaraja Saravanan, Khandelwal Vishal, Krishna Shibin, Lu Yi, Liu Zhiyuan, Kumar Mritunjay, Tang Xiao, Maciel García Glen Isaac, Chettri Dhanu, Liao Che-Hao, Li Xiaohang
Advanced Semiconductor Laboratory, Electrical and Computer Engineering Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
ACS Appl Mater Interfaces. 2024 Feb 7;16(5):6088-6097. doi: 10.1021/acsami.3c15778. Epub 2024 Jan 26.
Recent advancements in power electronics have been driven by GaO-based ultrawide bandgap (UWBG) semiconductor devices, enabling efficient high-current switching. However, integrating GaO power devices with essential silicon CMOS logic circuits for advanced control poses fabrication challenges. Researchers have introduced GaO-based NMOS and pseudo-CMOS circuits for integration, but these circuits may either consume more power or increase the design complexity. Hence, this article proposes GaO-based CMOS realized using heterogeneous 3D-stacked bilayer ambipolar transistors. These ambipolar transistors consist of HfO/NiO/GaO/NiO/HfO heterostructures that are wrapped around by the Ti/Au gate electrode, resulting in record high electron and hole current on/off ratios of 10 and 10. The threshold voltage, subthreshold swing, and current density measured from 100 ambipolar devices (across 5 batches) are around -7.99 ± 0.92 V (p-channel) and 7.81 ± 0.81 V (n-channel), 0.59 ± 0.07 V/dec (p-channel) and 0.61 ± 0.06 V/dec (n-channel), and 0.99 ± 0.26 mA/mm (p-channel) and 58.23 ± 12.99 mA/mm (n-channel), respectively. All the 100 ambipolar devices showed decent long-term stability over a period of 200 days, exhibiting reliable electrical performance. The threshold voltage shift (Δ) after negative bias stressing for a period of 3500 s is around 11.52 V (p-channel) and 10.21 V (n-channel), respectively. Notably, the n-channels exhibit ∼2 orders higher on/off ratio than the best GaO unipolar transistors at 300 °C. Moreover, the polarities of ambipolar transistors are reconfigurable into p- or n-MOS, which are integrated to demonstrate CMOS inverter, NOR, and NAND logic gates. The switching periods from "0" to "1" and from "1" to "0" of NOR are 0.12 and 0.17 μs, and those of NAND are 0.16 and 0.13 μs. This work lays the foundation of oxide-semiconductor-based CMOS for future integrated electronics.
基于氧化镓(GaO)的超宽带隙(UWBG)半导体器件推动了电力电子学的最新进展,实现了高效的大电流开关。然而,将GaO功率器件与用于先进控制的基本硅CMOS逻辑电路集成带来了制造挑战。研究人员已经引入了基于GaO的NMOS和伪CMOS电路进行集成,但这些电路要么功耗更高,要么增加设计复杂性。因此,本文提出了使用异质3D堆叠双层双极晶体管实现的基于GaO的CMOS。这些双极晶体管由HfO/NiO/GaO/NiO/HfO异质结构组成,被Ti/Au栅电极包裹,电子和空穴电流的开/关比分别达到创纪录的10⁷和10⁷。从100个双极器件(跨越5批次)测量得到的阈值电压、亚阈值摆幅和电流密度分别约为-7.99±0.92V(p沟道)和7.81±0.81V(n沟道)、0.59±0.07V/dec(p沟道)和0.61±0.06V/dec(n沟道),以及0.99±0.26mA/mm(p沟道)和58.23±12.99mA/mm(n沟道)。所有100个双极器件在200天的时间内都表现出良好的长期稳定性,展现出可靠的电学性能。在3500s的负偏压应力后,阈值电压偏移(Δ)分别约为11.52V(p沟道)和10.21V(n沟道)。值得注意的是,在300°C时,n沟道的开/关比比最好的GaO单极晶体管高出约2个数量级。此外,双极晶体管的极性可重新配置为p或n-MOS,将它们集成以展示CMOS反相器、或非门和与非门逻辑门。或非门从“0”到“1”以及从“1”到“0”的开关周期分别为0.12和0.17μs,与非门的开关周期分别为0.16和0.13μs。这项工作为未来的集成电子学奠定了基于氧化物半导体的CMOS基础。