Suppr超能文献

神经递质释放:突触囊泡生命的最后一刹那。

Neurotransmitter release: the last millisecond in the life of a synaptic vesicle.

机构信息

Department of Molecular and Cellular Physiology, and Howard Hughes Medical Institute, Lorry Lokey SIM1 Building, 265 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305, USA.

出版信息

Neuron. 2013 Oct 30;80(3):675-90. doi: 10.1016/j.neuron.2013.10.022.

Abstract

During an action potential, Ca(2+) entering a presynaptic terminal triggers synaptic vesicle exocytosis and neurotransmitter release in less than a millisecond. How does Ca(2+) stimulate release so rapidly and precisely? Work over the last decades revealed that Ca(2+) binding to synaptotagmin triggers release by stimulating synaptotagmin binding to a core fusion machinery composed of SNARE and SM proteins that mediates membrane fusion during exocytosis. Complexin adaptor proteins assist synaptotagmin by activating and clamping this core fusion machinery. Synaptic vesicles containing synaptotagmin are positioned at the active zone, the site of vesicle fusion, by a protein complex containing RIM proteins. RIM proteins activate docking and priming of synaptic vesicles and simultaneously recruit Ca(2+) channels to active zones, thereby connecting in a single complex primed synaptic vesicles to Ca(2+) channels. This architecture allows direct flow of Ca(2+) ions from Ca(2+) channels to synaptotagmin, which then triggers fusion, thus mediating tight millisecond coupling of an action potential to neurotransmitter release.

摘要

在动作电位期间,钙离子进入突触前末梢会在不到一毫秒的时间内触发突触小泡胞吐和神经递质释放。钙离子如何如此迅速和精确地刺激释放?过去几十年的研究工作表明,钙离子与突触融合蛋白结合会通过刺激突触融合蛋白与 SNARE 和 SM 蛋白组成的核心融合机制结合来触发释放,该机制介导胞吐过程中的膜融合。复合蛋白衔接蛋白通过激活和固定该核心融合机制来协助突触融合蛋白。含有突触融合蛋白的突触小泡通过包含 RIM 蛋白的蛋白质复合物定位于融合位点的活性区。RIM 蛋白激活突触小泡的 docking 和 priming,并同时将 Ca(2+) 通道募集到活性区,从而将预融合的突触小泡与 Ca(2+) 通道连接到单一的复合物中。这种结构允许 Ca(2+) 离子从 Ca(2+) 通道直接流向突触融合蛋白,从而触发融合,从而介导动作电位与神经递质释放之间紧密的毫秒级偶联。

相似文献

1
Neurotransmitter release: the last millisecond in the life of a synaptic vesicle.
Neuron. 2013 Oct 30;80(3):675-90. doi: 10.1016/j.neuron.2013.10.022.
2
The primed SNARE-complexin-synaptotagmin complex for neuronal exocytosis.
Nature. 2017 Aug 24;548(7668):420-425. doi: 10.1038/nature23484. Epub 2017 Aug 16.
3
A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis.
Cell. 2006 Sep 22;126(6):1175-87. doi: 10.1016/j.cell.2006.08.030.
7
The Core Complex of the Ca-Triggered Presynaptic Fusion Machinery.
J Mol Biol. 2023 Jan 15;435(1):167853. doi: 10.1016/j.jmb.2022.167853. Epub 2022 Oct 13.
8
Synaptic vesicle exocytosis.
Cold Spring Harb Perspect Biol. 2011 Dec 1;3(12):a005637. doi: 10.1101/cshperspect.a005637.
9
In vitro system capable of differentiating fast Ca2+-triggered content mixing from lipid exchange for mechanistic studies of neurotransmitter release.
Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):E304-13. doi: 10.1073/pnas.1107900108. Epub 2011 Jun 24.
10
Disentangling the Roles of RIM and Munc13 in Synaptic Vesicle Localization and Neurotransmission.
J Neurosci. 2020 Dec 2;40(49):9372-9385. doi: 10.1523/JNEUROSCI.1922-20.2020. Epub 2020 Nov 2.

引用本文的文献

1
Monoamine-induced diacylglycerol signaling rapidly accumulates Unc13 in nanoclusters for fast presynaptic potentiation.
Proc Natl Acad Sci U S A. 2025 Aug 26;122(34):e2514151122. doi: 10.1073/pnas.2514151122. Epub 2025 Aug 20.
2
Botulinum Neurotoxins: History, Mechanism, and Applications. A Narrative Review.
J Neurochem. 2025 Aug;169(8):e70187. doi: 10.1111/jnc.70187.
4
SNARE disassembly requires Sec18/NSF side loading.
Nat Struct Mol Biol. 2025 Jul 2. doi: 10.1038/s41594-025-01590-w.
5
Non-Gaussianity of neurotransmitters co-released from mammalian adrenal chromaffin cells.
Cogn Neurodyn. 2025 Dec;19(1):92. doi: 10.1007/s11571-025-10273-7. Epub 2025 Jun 17.
6
Molecular basis for Gβγ-SNARE-mediated inhibition of synaptic vesicle fusion.
J Biol Chem. 2025 Jun 14;301(8):110377. doi: 10.1016/j.jbc.2025.110377.
8
Dynamic regulation of vesicle pools in a detailed spatial model of the complete synaptic vesicle cycle.
Sci Adv. 2025 May 30;11(22):eadq6477. doi: 10.1126/sciadv.adq6477. Epub 2025 May 28.
10
Cholinergic T cells revitalize the tumor immune microenvironment: TIME to ChAT.
Nat Immunol. 2025 May;26(5):665-677. doi: 10.1038/s41590-025-02144-4. Epub 2025 Apr 30.

本文引用的文献

2
Lipid-anchored SNAREs lacking transmembrane regions fully support membrane fusion during neurotransmitter release.
Neuron. 2013 Oct 16;80(2):470-83. doi: 10.1016/j.neuron.2013.09.010. Epub 2013 Oct 10.
3
A molecular machine for neurotransmitter release: synaptotagmin and beyond.
Nat Med. 2013 Oct;19(10):1227-31. doi: 10.1038/nm.3338.
4
Comparative studies of Munc18c and Munc18-1 reveal conserved and divergent mechanisms of Sec1/Munc18 proteins.
Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):E3271-80. doi: 10.1073/pnas.1311232110. Epub 2013 Aug 5.
5
Subtle Interplay between synaptotagmin and complexin binding to the SNARE complex.
J Mol Biol. 2013 Sep 23;425(18):3461-75. doi: 10.1016/j.jmb.2013.07.001. Epub 2013 Jul 9.
6
Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ.
Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):E2812-20. doi: 10.1073/pnas.1310654110. Epub 2013 Jul 2.
7
Cryo-electron tomography reveals a critical role of RIM1α in synaptic vesicle tethering.
J Cell Biol. 2013 May 27;201(5):725-40. doi: 10.1083/jcb.201206063.
8
Complexin activates exocytosis of distinct secretory vesicles controlled by different synaptotagmins.
J Neurosci. 2013 Jan 23;33(4):1714-27. doi: 10.1523/JNEUROSCI.4087-12.2013.
10
Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release.
Science. 2013 Jan 25;339(6118):421-5. doi: 10.1126/science.1230473. Epub 2012 Dec 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验