Suppr超能文献

唾液腺发育和再生的分子线索。

Molecular cues for development and regeneration of salivary glands.

机构信息

Institute for Regenerative Medicine at Scott and White, Molecular and Cellular Medicine Department, Texas A&M Health Science Center, Temple, Texas, USA.

Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.

出版信息

Histol Histopathol. 2014 Mar;29(3):305-12. doi: 10.14670/HH-29.305. Epub 2013 Nov 5.

Abstract

The hypofunction of salivary glands caused by Sjögren's Syndrome or radiotherapy for head and neck cancer significantly compromises the quality of life of millions patients. Currently no curative treatment is available for the irreversible hyposalivation, whereas regenerative strategies targeting salivary stem/progenitor cells are promising. However, the success of these strategies is constrained by the lack of insights on the molecular cues of salivary gland regeneration. Recent advances in the molecular controls of salivary gland morphogenesis provided valuable clues for identifying potential regenerative cues. A complicated network of signaling molecules between epithelia, mesenchyme, endothelia, extracellular matrix and innervating nerves orchestrate the salivary gland organogenesis. Here we discuss the roles of several cross-talking intercellular signaling pathways, i.e., FGF, Wnt, Hedgehog, Eda, Notch, Chrm1/HB-EGF and Laminin/Integrin pathways, in the development of salivary glands and their potentials to promote salivary regeneration.

摘要

干燥综合征或头颈部癌症放疗引起的唾液腺功能减退,显著降低了数百万患者的生活质量。目前,对于不可逆性唾液分泌减少尚无有效的治疗方法,而针对唾液干/祖细胞的再生策略具有广阔的应用前景。然而,这些策略的成功受到缺乏对唾液腺再生分子线索的限制。唾液腺形态发生的分子调控方面的最新进展为鉴定潜在的再生线索提供了有价值的线索。上皮细胞、间充质细胞、内皮细胞、细胞外基质和支配神经之间的复杂信号分子网络协调唾液腺器官发生。在这里,我们讨论了几个相互作用的细胞间信号通路(即 FGF、Wnt、Hedgehog、Eda、Notch、Chrm1/HB-EGF 和层粘连蛋白/整合素通路)在唾液腺发育中的作用及其促进唾液腺再生的潜力。

相似文献

1
Molecular cues for development and regeneration of salivary glands.
Histol Histopathol. 2014 Mar;29(3):305-12. doi: 10.14670/HH-29.305. Epub 2013 Nov 5.
2
Wnt/β-catenin signaling regulates postnatal development and regeneration of the salivary gland.
Stem Cells Dev. 2010 Nov;19(11):1793-801. doi: 10.1089/scd.2009.0499. Epub 2010 Sep 10.
3
Fibrin hydrogels fortified with FGF-7/10 and laminin-1 peptides promote regeneration of irradiated salivary glands.
Acta Biomater. 2023 Dec;172:147-158. doi: 10.1016/j.actbio.2023.10.013. Epub 2023 Oct 14.
4
Salivary gland progenitor cell biology provides a rationale for therapeutic salivary gland regeneration.
Oral Dis. 2011 Jul;17(5):445-9. doi: 10.1111/j.1601-0825.2010.01783.x. Epub 2011 Jan 11.
5
Mouth-Watering Results: Clinical Need, Current Approaches, and Future Directions for Salivary Gland Regeneration.
Trends Mol Med. 2020 Jul;26(7):649-669. doi: 10.1016/j.molmed.2020.03.009. Epub 2020 May 1.
6
Anatomy, biogenesis and regeneration of salivary glands.
Monogr Oral Sci. 2014;24:1-13. doi: 10.1159/000358776. Epub 2014 May 23.
7
Restoring the function of salivary glands.
Oral Dis. 2008 Jan;14(1):15-24. doi: 10.1111/j.1601-0825.2006.01339.x.
8
Salivary gland function, development, and regeneration.
Physiol Rev. 2022 Jul 1;102(3):1495-1552. doi: 10.1152/physrev.00015.2021. Epub 2022 Mar 28.
9
Epithelial Cell Lineage and Signaling in Murine Salivary Glands.
J Dent Res. 2019 Oct;98(11):1186-1194. doi: 10.1177/0022034519864592. Epub 2019 Jul 22.
10
Salivary gland regeneration: from salivary gland stem cells to three-dimensional bioprinting.
SLAS Technol. 2023 Jun;28(3):199-209. doi: 10.1016/j.slast.2023.03.004. Epub 2023 Apr 3.

引用本文的文献

1
Salivary gland stem/progenitor cells: advancing from basic science to clinical applications.
Cell Regen. 2025 Jan 24;14(1):4. doi: 10.1186/s13619-025-00221-5.
2
Extracellular matrix turnover in salivary gland disorders and regenerative therapies: Obstacles and opportunities.
J Oral Biol Craniofac Res. 2023 Nov-Dec;13(6):693-703. doi: 10.1016/j.jobcr.2023.08.009. Epub 2023 Sep 12.
3
4
Role of the hedgehog signaling pathway in rheumatic diseases: An overview.
Front Immunol. 2022 Aug 25;13:940455. doi: 10.3389/fimmu.2022.940455. eCollection 2022.
5
Diagnosis, Prevention, and Treatment of Radiotherapy-Induced Xerostomia: A Review.
J Oncol. 2022 Aug 27;2022:7802334. doi: 10.1155/2022/7802334. eCollection 2022.
6
Notch1 down-regulation in lineage-restricted niches is involved in the development of mouse eccrine sweat glands.
J Mol Histol. 2022 Oct;53(5):857-867. doi: 10.1007/s10735-022-10098-2. Epub 2022 Aug 25.
7
Bioengineering in salivary gland regeneration.
J Biomed Sci. 2022 Jun 6;29(1):35. doi: 10.1186/s12929-022-00819-w.
8
9
Dynamic activation of Wnt, Fgf, and Hh signaling during soft palate development.
PLoS One. 2019 Oct 15;14(10):e0223879. doi: 10.1371/journal.pone.0223879. eCollection 2019.
10
Epithelial Cell Lineage and Signaling in Murine Salivary Glands.
J Dent Res. 2019 Oct;98(11):1186-1194. doi: 10.1177/0022034519864592. Epub 2019 Jul 22.

本文引用的文献

2
Identification of radiation-induced microRNA transcriptome by next-generation massively parallel sequencing.
J Radiat Res. 2013 Sep;54(5):808-22. doi: 10.1093/jrr/rrt014. Epub 2013 Feb 26.
4
Parasympathetic stimulation improves epithelial organ regeneration.
Nat Commun. 2013;4:1494. doi: 10.1038/ncomms2493.
5
Early responses to adenoviral-mediated transfer of the aquaporin-1 cDNA for radiation-induced salivary hypofunction.
Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19403-7. doi: 10.1073/pnas.1210662109. Epub 2012 Nov 5.
6
Concurrent transient activation of Wnt/β-catenin pathway prevents radiation damage to salivary glands.
Int J Radiat Oncol Biol Phys. 2012 May 1;83(1):e109-16. doi: 10.1016/j.ijrobp.2011.11.062. Epub 2012 Feb 16.
7
Targeted expression of GLI1 in the salivary glands results in an altered differentiation program and hyperplasia.
Am J Pathol. 2011 Nov;179(5):2569-79. doi: 10.1016/j.ajpath.2011.07.033. Epub 2011 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验