Suppr超能文献

利用光学透明化和多光子显微镜对三维组织工程构建体进行研究。

The use of optical clearing and multiphoton microscopy for investigation of three-dimensional tissue-engineered constructs.

作者信息

Calle Elizabeth A, Vesuna Sam, Dimitrievska Sashka, Zhou Kevin, Huang Angela, Zhao Liping, Niklason Laura E, Levene Michael J

机构信息

1 Department of Biomedical Engineering, Yale University , New Haven, Connecticut.

出版信息

Tissue Eng Part C Methods. 2014 Jul;20(7):570-7. doi: 10.1089/ten.TEC.2013.0538. Epub 2014 Jan 16.

Abstract

Recent advances in three-dimensional (3D) tissue engineering have concomitantly generated a need for new methods to visualize and assess the tissue. In particular, methods for imaging intact volumes of whole tissue, rather than a single plane, are required. Herein, we describe the use of multiphoton microscopy, combined with optical clearing, to noninvasively probe decellularized lung extracellular matrix scaffolds and decellularized, tissue-engineered blood vessels. We also evaluate recellularized lung tissue scaffolds. In addition to nondestructive imaging of tissue volumes greater than 4 mm(3), the lung tissue can be visualized using three distinct signals, combined or singly, that allow for simple separation of cells and different components of the extracellular matrix. Because the 3D volumes are not reconstructions, they do not require registration algorithms to generate digital volumes, and maintenance of isotropic resolution is not required when acquiring stacks of images. Once a virtual volume of tissue is generated, structures that have innate 3D features, such as the lumens of vessels and airways, are easily animated and explored in all dimensions. In blood vessels, individual collagen fibers can be visualized at the micron scale and their alignment assessed at various depths through the tissue, potentially providing some nondestructive measure of vessel integrity and mechanics. Finally, both the lungs and vessels assayed here were optically cleared, imaged, and visualized in a matter of hours, such that the added benefits of these techniques can be achieved with little more hassle or processing time than that associated with traditional histological methods.

摘要

三维(3D)组织工程学的最新进展同时引发了对可视化和评估组织的新方法的需求。特别是,需要能够对整个组织的完整体积而非单个平面进行成像的方法。在此,我们描述了多光子显微镜结合光学透明化技术的应用,用于对脱细胞肺细胞外基质支架和脱细胞组织工程血管进行无创探测。我们还评估了再细胞化肺组织支架。除了对大于4立方毫米的组织体积进行无损成像外,肺组织还可以通过三种不同的信号进行可视化,这些信号可以单独使用,也可以组合使用,从而能够简单地分离细胞和细胞外基质的不同成分。由于三维体积不是重建结果,它们不需要配准算法来生成数字体积,并且在采集图像堆栈时不需要保持各向同性分辨率。一旦生成组织的虚拟体积,具有固有三维特征的结构,如血管和气道的管腔,就可以轻松地在各个维度上进行动画展示和探索。在血管中,单个胶原纤维可以在微米尺度上可视化,并且可以在组织的不同深度评估它们的排列,这可能为血管完整性和力学提供一些无损测量方法。最后,这里所检测的肺和血管在数小时内就完成了光学透明化、成像和可视化,因此与传统组织学方法相比,这些技术只需多一点麻烦或处理时间就能实现更多的益处。

相似文献

1
The use of optical clearing and multiphoton microscopy for investigation of three-dimensional tissue-engineered constructs.
Tissue Eng Part C Methods. 2014 Jul;20(7):570-7. doi: 10.1089/ten.TEC.2013.0538. Epub 2014 Jan 16.
2
Multiphoton Imaging of Maturation in Tissue Engineering.
Tissue Eng Part C Methods. 2024 Jan;30(1):38-48. doi: 10.1089/ten.TEC.2023.0141.
3
Matrix composition and mechanics of decellularized lung scaffolds.
Cells Tissues Organs. 2012;195(3):222-31. doi: 10.1159/000324896. Epub 2011 Apr 18.
4
Noninvasive ultrasound imaging for assessment of intact microstructure of extracellular matrix in tissue engineering.
Artif Organs. 2019 Nov;43(11):1104-1110. doi: 10.1111/aor.13516. Epub 2019 Jul 18.
6
Comparative biology of decellularized lung matrix: Implications of species mismatch in regenerative medicine.
Biomaterials. 2016 Sep;102:220-30. doi: 10.1016/j.biomaterials.2016.06.025. Epub 2016 Jun 16.
8
Decellularized skin/adipose tissue flap matrix for engineering vascularized composite soft tissue flaps.
Acta Biomater. 2016 Apr 15;35:166-84. doi: 10.1016/j.actbio.2016.02.017. Epub 2016 Feb 12.
9
A fiber-optic-based imaging system for nondestructive assessment of cell-seeded tissue-engineered scaffolds.
Tissue Eng Part C Methods. 2012 Sep;18(9):677-87. doi: 10.1089/ten.TEC.2011.0490. Epub 2012 May 10.
10
Modeling aberrant wound healing using tissue-engineered skin constructs and multiphoton microscopy.
Arch Facial Plast Surg. 2004 May-Jun;6(3):180-7. doi: 10.1001/archfaci.6.3.180.

引用本文的文献

2
Linking the region-specific tissue microstructure to the biaxial mechanical properties of the porcine left anterior descending artery.
Acta Biomater. 2022 Sep 15;150:295-309. doi: 10.1016/j.actbio.2022.07.036. Epub 2022 Jul 26.
3
Three-Dimensional Imaging in Stem Cell-Based Researches.
Front Vet Sci. 2021 Apr 14;8:657525. doi: 10.3389/fvets.2021.657525. eCollection 2021.
4
Spatiotemporally controlled nano-sized third harmonic generation agents.
Biomed Opt Express. 2019 Jun 13;10(7):3301-3316. doi: 10.1364/BOE.10.003301. eCollection 2019 Jul 1.
5
Vascular Mechanobiology: Towards Control of In Situ Regeneration.
Cells. 2017 Jul 3;6(3):19. doi: 10.3390/cells6030019.
6
7
Into the depths: Techniques for in vitro three-dimensional microtissue visualization.
Biotechniques. 2015 Nov 1;59(5):279-86. doi: 10.2144/000114353. eCollection 2015 Nov.
8
Understanding the three-dimensional world from two-dimensional immunofluorescent adjacent sections.
J Pathol Inform. 2015 Jun 3;6:27. doi: 10.4103/2153-3539.158052. eCollection 2015.
9
Optical clearing in dense connective tissues to visualize cellular connectivity in situ.
PLoS One. 2015 Jan 12;10(1):e0116662. doi: 10.1371/journal.pone.0116662. eCollection 2015.
10
Application and assessment of optical clearing methods for imaging of tissue-engineered neural stem cell spheres.
Tissue Eng Part C Methods. 2015 Mar;21(3):292-302. doi: 10.1089/ten.TEC.2014.0296. Epub 2014 Sep 19.

本文引用的文献

1
Deaths: preliminary data for 2011.
Natl Vital Stat Rep. 2012 Oct 10;61(6):1-51.
2
High-resolution, 2- and 3-dimensional imaging of uncut, unembedded tissue biopsy samples.
Arch Pathol Lab Med. 2014 Mar;138(3):395-402. doi: 10.5858/arpa.2013-0094-OA. Epub 2013 Jul 5.
3
SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction.
Nat Neurosci. 2013 Aug;16(8):1154-61. doi: 10.1038/nn.3447. Epub 2013 Jun 23.
4
Structural and molecular interrogation of intact biological systems.
Nature. 2013 May 16;497(7449):332-7. doi: 10.1038/nature12107. Epub 2013 Apr 10.
5
ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue.
Development. 2013 Mar;140(6):1364-8. doi: 10.1242/dev.091844.
6
OPTN/SRTR 2011 Annual Data Report: lung.
Am J Transplant. 2013 Jan;13 Suppl 1:149-77. doi: 10.1111/ajt.12024.
7
Three-dimensional imaging of solvent-cleared organs using 3DISCO.
Nat Protoc. 2012 Nov;7(11):1983-95. doi: 10.1038/nprot.2012.119. Epub 2012 Oct 11.
8
Multiphoton microscopy of cleared mouse brain expressing YFP.
J Vis Exp. 2012 Sep 23(67):e3848. doi: 10.3791/3848.
10
Allogeneic human tissue-engineered blood vessel.
J Vasc Surg. 2012 Mar;55(3):790-8. doi: 10.1016/j.jvs.2011.07.098. Epub 2011 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验