Kabadi Pranita K, Vantangoli Marguerite M, Rodd April L, Leary Elizabeth, Madnick Samantha J, Morgan Jeffrey R, Kane Agnes, Boekelheide Kim
Department of Pathology and Laboratory Medicine, Brown University, Providence, RI.
Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI.
Biotechniques. 2015 Nov 1;59(5):279-86. doi: 10.2144/000114353. eCollection 2015 Nov.
Three-dimensional (3-D) in vitro platforms have been shown to closely recapitulate human physiology when compared with conventional two-dimensional (2-D) in vitro or in vivo animal model systems. This confers a substantial advantage in evaluating disease mechanisms, pharmaceutical drug discovery, and toxicity testing. Despite the benefits of 3-D cell culture, limitations in visualization and imaging of 3-D microtissues present significant challenges. Here we optimized histology and microscopy techniques to overcome the constraints of 3-D imaging. For morphological assessment of 3-D microtissues of several cell types, different time points, and different sizes, a two-step glycol methacrylate embedding protocol for evaluating 3-D microtissues produced using agarose hydrogels improved resolution of nuclear and cellular histopathology characteristic of cell death and proliferation. Additional immunohistochemistry, immunofluorescence, and in situ immunostaining techniques were successfully adapted to these microtissues and enhanced by optical clearing. Utilizing the Clear(T2) protocol greatly increased fluorescence signal intensity, imaging depth, and clarity, allowing for more complete confocal fluorescence microscopy imaging of these 3-D microtissues compared with uncleared samples. The refined techniques presented here address the key challenges associated with 3-D imaging, providing new and alternative methods in evaluating disease pathogenesis, delineating toxicity pathways, and enhancing the versatility of 3-D in vitro testing systems in pharmacological and toxicological applications.
与传统的二维体外或体内动物模型系统相比,三维(3-D)体外平台已被证明能更紧密地模拟人体生理机能。这在评估疾病机制、药物研发和毒性测试方面具有显著优势。尽管三维细胞培养有诸多益处,但三维微组织的可视化和成像方面的局限性带来了重大挑战。在此,我们优化了组织学和显微镜技术以克服三维成像的限制。对于多种细胞类型、不同时间点和不同大小的三维微组织进行形态学评估时,一种用于评估使用琼脂糖水凝胶产生的三维微组织的两步甲基丙烯酸乙二醇酯包埋方案提高了细胞死亡和增殖的细胞核及细胞组织病理学特征的分辨率。额外的免疫组织化学、免疫荧光和原位免疫染色技术成功应用于这些微组织,并通过光学透明化得到增强。与未进行透明化处理的样本相比,利用Clear(T2)方案极大地提高了荧光信号强度、成像深度和清晰度,从而能够对这些三维微组织进行更完整的共聚焦荧光显微镜成像。本文介绍的改进技术解决了与三维成像相关的关键挑战,为评估疾病发病机制、描绘毒性途径以及增强三维体外测试系统在药理学和毒理学应用中的多功能性提供了新的替代方法。