Suppr超能文献

深入探究:体外三维微组织可视化技术

Into the depths: Techniques for in vitro three-dimensional microtissue visualization.

作者信息

Kabadi Pranita K, Vantangoli Marguerite M, Rodd April L, Leary Elizabeth, Madnick Samantha J, Morgan Jeffrey R, Kane Agnes, Boekelheide Kim

机构信息

Department of Pathology and Laboratory Medicine, Brown University, Providence, RI.

Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI.

出版信息

Biotechniques. 2015 Nov 1;59(5):279-86. doi: 10.2144/000114353. eCollection 2015 Nov.

Abstract

Three-dimensional (3-D) in vitro platforms have been shown to closely recapitulate human physiology when compared with conventional two-dimensional (2-D) in vitro or in vivo animal model systems. This confers a substantial advantage in evaluating disease mechanisms, pharmaceutical drug discovery, and toxicity testing. Despite the benefits of 3-D cell culture, limitations in visualization and imaging of 3-D microtissues present significant challenges. Here we optimized histology and microscopy techniques to overcome the constraints of 3-D imaging. For morphological assessment of 3-D microtissues of several cell types, different time points, and different sizes, a two-step glycol methacrylate embedding protocol for evaluating 3-D microtissues produced using agarose hydrogels improved resolution of nuclear and cellular histopathology characteristic of cell death and proliferation. Additional immunohistochemistry, immunofluorescence, and in situ immunostaining techniques were successfully adapted to these microtissues and enhanced by optical clearing. Utilizing the Clear(T2) protocol greatly increased fluorescence signal intensity, imaging depth, and clarity, allowing for more complete confocal fluorescence microscopy imaging of these 3-D microtissues compared with uncleared samples. The refined techniques presented here address the key challenges associated with 3-D imaging, providing new and alternative methods in evaluating disease pathogenesis, delineating toxicity pathways, and enhancing the versatility of 3-D in vitro testing systems in pharmacological and toxicological applications.

摘要

与传统的二维体外或体内动物模型系统相比,三维(3-D)体外平台已被证明能更紧密地模拟人体生理机能。这在评估疾病机制、药物研发和毒性测试方面具有显著优势。尽管三维细胞培养有诸多益处,但三维微组织的可视化和成像方面的局限性带来了重大挑战。在此,我们优化了组织学和显微镜技术以克服三维成像的限制。对于多种细胞类型、不同时间点和不同大小的三维微组织进行形态学评估时,一种用于评估使用琼脂糖水凝胶产生的三维微组织的两步甲基丙烯酸乙二醇酯包埋方案提高了细胞死亡和增殖的细胞核及细胞组织病理学特征的分辨率。额外的免疫组织化学、免疫荧光和原位免疫染色技术成功应用于这些微组织,并通过光学透明化得到增强。与未进行透明化处理的样本相比,利用Clear(T2)方案极大地提高了荧光信号强度、成像深度和清晰度,从而能够对这些三维微组织进行更完整的共聚焦荧光显微镜成像。本文介绍的改进技术解决了与三维成像相关的关键挑战,为评估疾病发病机制、描绘毒性途径以及增强三维体外测试系统在药理学和毒理学应用中的多功能性提供了新的替代方法。

相似文献

1
Into the depths: Techniques for in vitro three-dimensional microtissue visualization.
Biotechniques. 2015 Nov 1;59(5):279-86. doi: 10.2144/000114353. eCollection 2015 Nov.
3
Clarity and Immunofluorescence on Mouse Brain Tissue.
Curr Protoc Neurosci. 2018 Apr;83(1):e46. doi: 10.1002/cpns.46.
4
Magnetically controllable 3D microtissues based on magnetic microcryogels.
Lab Chip. 2014 Aug 7;14(15):2614-25. doi: 10.1039/c4lc00081a. Epub 2014 Apr 15.
7
Tissue clearing for confocal imaging of native and bio-artificial skeletal muscle.
Biotech Histochem. 2015;90(6):424-31. doi: 10.3109/10520295.2015.1019564. Epub 2015 Apr 20.

引用本文的文献

1
MicroBundleCompute: Automated segmentation, tracking, and analysis of subdomain deformation in cardiac microbundles.
PLoS One. 2024 Mar 26;19(3):e0298863. doi: 10.1371/journal.pone.0298863. eCollection 2024.
2
4
Perspective: Extending the Utility of Three-Dimensional Organoids by Tissue Clearing Technologies.
Front Cell Dev Biol. 2021 Jun 14;9:679226. doi: 10.3389/fcell.2021.679226. eCollection 2021.
5
An integrated framework for quantifying immune-tumour interactions in a 3D co-culture model.
Commun Biol. 2021 Jun 24;4(1):781. doi: 10.1038/s42003-021-02296-7.
6
Influence of and Agitation Conditions in the Fluorescence Imaging of 3D Spheroids.
Int J Mol Sci. 2020 Dec 29;22(1):266. doi: 10.3390/ijms22010266.
8
Routine Optical Clearing of 3D-Cell Cultures: Simplicity Forward.
Front Mol Biosci. 2020 Feb 21;7:20. doi: 10.3389/fmolb.2020.00020. eCollection 2020.
9
Sample preparation strategies for high-throughput mass spectrometry imaging of primary tumor organoids.
J Mass Spectrom. 2020 Apr;55(4):e4452. doi: 10.1002/jms.4452. Epub 2020 Jan 21.

本文引用的文献

1
Clarifying Tissue Clearing.
Cell. 2015 Jul 16;162(2):246-257. doi: 10.1016/j.cell.2015.06.067.
2
Application and assessment of optical clearing methods for imaging of tissue-engineered neural stem cell spheres.
Tissue Eng Part C Methods. 2015 Mar;21(3):292-302. doi: 10.1089/ten.TEC.2014.0296. Epub 2014 Sep 19.
3
"In vitro" 3D models of tumor-immune system interaction.
Adv Drug Deliv Rev. 2014 Dec 15;79-80:145-54. doi: 10.1016/j.addr.2014.05.003. Epub 2014 May 9.
4
Recent progress in tissue optical clearing.
Laser Photon Rev. 2013 Sep;7(5):732-757. doi: 10.1002/lpor.201200056. Epub 2013 Feb 5.
5
The use of optical clearing and multiphoton microscopy for investigation of three-dimensional tissue-engineered constructs.
Tissue Eng Part C Methods. 2014 Jul;20(7):570-7. doi: 10.1089/ten.TEC.2013.0538. Epub 2014 Jan 16.
6
A high-throughput-compatible 3D microtissue co-culture system for phenotypic RNAi screening applications.
J Biomol Screen. 2013 Dec;18(10):1330-7. doi: 10.1177/1087057113499071. Epub 2013 Sep 30.
7
Structural and molecular interrogation of intact biological systems.
Nature. 2013 May 16;497(7449):332-7. doi: 10.1038/nature12107. Epub 2013 Apr 10.
9
High-resolution imaging of entire organs by 3-dimensional imaging of solvent cleared organs (3DISCO).
Exp Neurol. 2013 Apr;242:57-64. doi: 10.1016/j.expneurol.2012.10.018. Epub 2012 Nov 1.
10
Three-dimensional imaging of solvent-cleared organs using 3DISCO.
Nat Protoc. 2012 Nov;7(11):1983-95. doi: 10.1038/nprot.2012.119. Epub 2012 Oct 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验