Suppr超能文献

进化中的混合搭配与 MFS 转运蛋白 II。

Evolutionary mix-and-match with MFS transporters II.

机构信息

Department of Physiology, Department of Microbiology, Immunology and Molecular Genetics, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095.

出版信息

Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):E4831-8. doi: 10.1073/pnas.1319754110. Epub 2013 Nov 20.

Abstract

One fundamentally important problem for understanding the mechanism of coupling between substrate and H(+) translocation with secondary active transport proteins is the identification and physical localization of residues involved in substrate and H(+) binding. This information is exceptionally difficult to obtain with the Major Facilitator Superfamily (MFS) because of the broad sequence diversity of the members. The MFS is the largest and most diverse group of transporters, many of which are clinically important, and includes members from all kingdoms of life. A wide range of substrates is transported, in many instances against a concentration gradient by transduction of the energy stored in an H(+) electrochemical gradient using symport mechanisms, which are discussed herein. Crystallographic structures of MFS members indicate that a deep central hydrophilic cavity surrounded by 12 mostly irregular transmembrane helices represents a common structural feature. An inverted triple-helix structural symmetry motif within the N- and C-terminal six-helix bundles suggests that the proteins may have arisen by intragenic multiplication. In the work presented here, the triple-helix motifs are aligned in combinatorial fashion so as to detect functionally homologous positions with known atomic structures of MFS members. Substrate and H(+)-binding sites in symporters that transport substrates, ranging from simple ions like phosphate to more complex peptides or disaccharides, are found to be in similar locations. It also appears likely that there is a homologous ordered kinetic mechanism for the H(+)-coupled MFS symporters.

摘要

理解底物与 H(+)转运与次级主动转运蛋白偶联机制的一个根本问题是鉴定和物理定位参与底物和 H(+)结合的残基。由于成员的广泛序列多样性,对于主要易化因子超家族 (MFS) 来说,这是一项非常困难的信息。MFS 是最大和最多样化的转运蛋白群体之一,其中许多具有临床重要性,并且包括来自所有生命领域的成员。广泛的底物被转运,在许多情况下,通过利用同向转运机制将储存在 H(+)电化学梯度中的能量转化为浓度梯度来转运,本文将讨论这些机制。MFS 成员的晶体结构表明,一个由 12 个主要不规则跨膜螺旋包围的深中央亲水腔是一个共同的结构特征。N 和 C 末端六螺旋束内的倒三联螺旋结构对称基序表明,这些蛋白质可能是通过基因内倍增产生的。在本文介绍的工作中,三联螺旋基序以组合的方式进行排列,以便在具有 MFS 成员已知原子结构的情况下检测功能同源位置。在转运从磷酸盐等简单离子到更复杂的肽或二糖等底物的共转运体中,发现底物和 H(+)-结合位点位于相似位置。似乎也存在一个同源的有序动力学机制,用于 H(+)偶联的 MFS 共转运体。

相似文献

1
Evolutionary mix-and-match with MFS transporters II.
Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):E4831-8. doi: 10.1073/pnas.1319754110. Epub 2013 Nov 20.
2
Evolutionary mix-and-match with MFS transporters.
Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):5870-4. doi: 10.1073/pnas.1303538110. Epub 2013 Mar 25.
3
Comparative Sequence-Function Analysis of the Major Facilitator Superfamily: The "Mix-and-Match" Method.
Methods Enzymol. 2015;557:521-49. doi: 10.1016/bs.mie.2014.12.015. Epub 2015 Mar 24.
4
Integration of evolutionary features for the identification of functionally important residues in major facilitator superfamily transporters.
PLoS Comput Biol. 2009 Oct;5(10):e1000522. doi: 10.1371/journal.pcbi.1000522. Epub 2009 Oct 2.
5
Structure of the YajR transporter suggests a transport mechanism based on the conserved motif A.
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14664-9. doi: 10.1073/pnas.1308127110. Epub 2013 Aug 15.
6
Functional architecture of MFS D-glucose transporters.
Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):E719-27. doi: 10.1073/pnas.1400336111. Epub 2014 Feb 3.
7
From membrane to molecule to the third amino acid from the left with a membrane transport protein.
Q Rev Biophys. 1997 Nov;30(4):333-64. doi: 10.1017/s0033583597003387.
8
Sequence alignment and homology threading reveals prokaryotic and eukaryotic proteins similar to lactose permease.
J Mol Biol. 2006 May 12;358(4):1060-70. doi: 10.1016/j.jmb.2006.02.049. Epub 2006 Mar 9.
9
Energy coupling mechanisms of MFS transporters.
Protein Sci. 2015 Oct;24(10):1560-79. doi: 10.1002/pro.2759. Epub 2015 Sep 18.
10
Expansion of the Major Facilitator Superfamily (MFS) to include novel transporters as well as transmembrane-acting enzymes.
Biochim Biophys Acta Biomembr. 2020 Sep 1;1862(9):183277. doi: 10.1016/j.bbamem.2020.183277. Epub 2020 Mar 20.

引用本文的文献

1
Ins and Outs of Rocker Switch Mechanism in Major Facilitator Superfamily of Transporters.
Membranes (Basel). 2023 Apr 25;13(5):462. doi: 10.3390/membranes13050462.
2
Variations in exons 11 and 12 of the multi-pest resistance wheat gene are independently additive for leaf rust resistance.
Front Plant Sci. 2023 Feb 23;13:1061490. doi: 10.3389/fpls.2022.1061490. eCollection 2022.
3
Molecular characterization of a novel strain of protecting wheat from sheath blight disease caused by .
Front Plant Sci. 2022 Oct 17;13:1019512. doi: 10.3389/fpls.2022.1019512. eCollection 2022.
5
Structures and General Transport Mechanisms by the Major Facilitator Superfamily (MFS).
Chem Rev. 2021 May 12;121(9):5289-5335. doi: 10.1021/acs.chemrev.0c00983. Epub 2021 Apr 22.
6
A Mycobacterium avium subsp. paratuberculosis Predicted Serine Protease Is Associated with Acid Stress and Intraphagosomal Survival.
Front Cell Infect Microbiol. 2016 Aug 22;6:85. doi: 10.3389/fcimb.2016.00085. eCollection 2016.
8
A Numbering System for MFS Transporter Proteins.
Front Mol Biosci. 2016 Jun 2;3:21. doi: 10.3389/fmolb.2016.00021. eCollection 2016.
9
pH Regulation of Electrogenic Sugar/H+ Symport in MFS Sugar Permeases.
PLoS One. 2016 May 26;11(5):e0156392. doi: 10.1371/journal.pone.0156392. eCollection 2016.
10
Experimentally optimized threading structures of the proton-coupled folate transporter.
FEBS Open Bio. 2016 Feb 22;6(3):216-30. doi: 10.1002/2211-5463.12041. eCollection 2016 Mar.

本文引用的文献

1
Structural insights into substrate recognition in proton-dependent oligopeptide transporters.
EMBO Rep. 2013 Sep;14(9):804-10. doi: 10.1038/embor.2013.107. Epub 2013 Jul 19.
2
Structural basis for dynamic mechanism of proton-coupled symport by the peptide transporter POT.
Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11343-8. doi: 10.1073/pnas.1301079110. Epub 2013 Jun 24.
3
Crystal structure of a nitrate/nitrite exchanger.
Nature. 2013 May 30;497(7451):647-51. doi: 10.1038/nature12139. Epub 2013 May 12.
4
Structural basis for substrate transport in the GLUT-homology family of monosaccharide transporters.
Nat Struct Mol Biol. 2013 Jun;20(6):766-8. doi: 10.1038/nsmb.2569. Epub 2013 Apr 28.
5
Crystal structure of a eukaryotic phosphate transporter.
Nature. 2013 Apr 25;496(7446):533-6. doi: 10.1038/nature12042. Epub 2013 Mar 31.
6
Evolutionary mix-and-match with MFS transporters.
Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):5870-4. doi: 10.1073/pnas.1303538110. Epub 2013 Mar 25.
7
Structure and mechanism of a nitrate transporter.
Cell Rep. 2013 Mar 28;3(3):716-23. doi: 10.1016/j.celrep.2013.03.007. Epub 2013 Mar 21.
8
Crystal structure of a bacterial homologue of glucose transporters GLUT1-4.
Nature. 2012 Oct 18;490(7420):361-6. doi: 10.1038/nature11524.
9
Role of protons in sugar binding to LacY.
Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):16835-40. doi: 10.1073/pnas.1214890109. Epub 2012 Oct 2.
10
Apo-intermediate in the transport cycle of lactose permease (LacY).
Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):E2970-8. doi: 10.1073/pnas.1211183109. Epub 2012 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验