Janelia Farm Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA.
Cell. 2013 Dec 5;155(6):1337-50. doi: 10.1016/j.cell.2013.11.002.
Neural circuits for essential natural behaviors are shaped by selective pressure to coordinate reliable execution of flexible goal-directed actions. However, the structural and functional organization of survival-oriented circuits is poorly understood due to exceptionally complex neuroanatomy. This is exemplified by AGRP neurons, which are a molecularly defined population that is sufficient to rapidly coordinate voracious food seeking and consumption behaviors. Here, we use cell-type-specific techniques for neural circuit manipulation and projection-specific anatomical analysis to examine the organization of this critical homeostatic circuit that regulates feeding. We show that AGRP neuronal circuits use a segregated, parallel, and redundant output configuration. AGRP neuron axon projections that target different brain regions originate from distinct subpopulations, several of which are sufficient to independently evoke feeding. The concerted anatomical and functional analysis of AGRP neuron projection populations reveals a constellation of core forebrain nodes, which are part of an extended circuit that mediates feeding behavior.
用于基本自然行为的神经回路是通过选择性压力形成的,以协调灵活的目标导向动作的可靠执行。然而,由于神经解剖结构异常复杂,生存导向回路的结构和功能组织仍不清楚。这方面的一个例子是 Agrp 神经元,它是一个分子定义的群体,足以快速协调贪婪的觅食和消费行为。在这里,我们使用细胞类型特异性的神经回路操作技术和投影特异性的解剖分析来研究调节进食的这个关键的体内平衡回路的组织。我们表明 Agrp 神经元回路使用分离的、平行的和冗余的输出配置。靶向不同脑区的 Agrp 神经元轴突投射起源于不同的亚群,其中几个亚群足以独立地引发进食。Agrp 神经元投射群体的协调解剖和功能分析揭示了一组核心前脑节点,它们是介导进食行为的扩展回路的一部分。