Suppr超能文献

用于摄食行为体内平衡控制的并行、冗余电路组织。

Parallel, redundant circuit organization for homeostatic control of feeding behavior.

机构信息

Janelia Farm Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA.

出版信息

Cell. 2013 Dec 5;155(6):1337-50. doi: 10.1016/j.cell.2013.11.002.

Abstract

Neural circuits for essential natural behaviors are shaped by selective pressure to coordinate reliable execution of flexible goal-directed actions. However, the structural and functional organization of survival-oriented circuits is poorly understood due to exceptionally complex neuroanatomy. This is exemplified by AGRP neurons, which are a molecularly defined population that is sufficient to rapidly coordinate voracious food seeking and consumption behaviors. Here, we use cell-type-specific techniques for neural circuit manipulation and projection-specific anatomical analysis to examine the organization of this critical homeostatic circuit that regulates feeding. We show that AGRP neuronal circuits use a segregated, parallel, and redundant output configuration. AGRP neuron axon projections that target different brain regions originate from distinct subpopulations, several of which are sufficient to independently evoke feeding. The concerted anatomical and functional analysis of AGRP neuron projection populations reveals a constellation of core forebrain nodes, which are part of an extended circuit that mediates feeding behavior.

摘要

用于基本自然行为的神经回路是通过选择性压力形成的,以协调灵活的目标导向动作的可靠执行。然而,由于神经解剖结构异常复杂,生存导向回路的结构和功能组织仍不清楚。这方面的一个例子是 Agrp 神经元,它是一个分子定义的群体,足以快速协调贪婪的觅食和消费行为。在这里,我们使用细胞类型特异性的神经回路操作技术和投影特异性的解剖分析来研究调节进食的这个关键的体内平衡回路的组织。我们表明 Agrp 神经元回路使用分离的、平行的和冗余的输出配置。靶向不同脑区的 Agrp 神经元轴突投射起源于不同的亚群,其中几个亚群足以独立地引发进食。Agrp 神经元投射群体的协调解剖和功能分析揭示了一组核心前脑节点,它们是介导进食行为的扩展回路的一部分。

相似文献

1
Parallel, redundant circuit organization for homeostatic control of feeding behavior.
Cell. 2013 Dec 5;155(6):1337-50. doi: 10.1016/j.cell.2013.11.002.
2
Deconstruction of a neural circuit for hunger.
Nature. 2012 Aug 9;488(7410):172-7. doi: 10.1038/nature11270.
3
AgRP Neurons Can Increase Food Intake during Conditions of Appetite Suppression and Inhibit Anorexigenic Parabrachial Neurons.
J Neurosci. 2017 Sep 6;37(36):8678-8687. doi: 10.1523/JNEUROSCI.0798-17.2017. Epub 2017 Aug 7.
4
AGRP Neurons Project to the Medial Preoptic Area and Modulate Maternal Nest-Building.
J Neurosci. 2019 Jan 16;39(3):456-471. doi: 10.1523/JNEUROSCI.0958-18.2018. Epub 2018 Nov 20.
5
AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training.
Nat Neurosci. 2011 Mar;14(3):351-5. doi: 10.1038/nn.2739. Epub 2010 Jan 5.
6
Hypothalamic Agrp neurons drive stereotypic behaviors beyond feeding.
Cell. 2015 Mar 12;160(6):1222-32. doi: 10.1016/j.cell.2015.02.024. Epub 2015 Mar 5.
7
Agouti-related protein neuron circuits that regulate appetite.
Neuroendocrinology. 2014;100(2-3):95-102. doi: 10.1159/000369072. Epub 2014 Nov 6.
8
Sensory detection of food rapidly modulates arcuate feeding circuits.
Cell. 2015 Feb 26;160(5):829-841. doi: 10.1016/j.cell.2015.01.033. Epub 2015 Feb 19.
9
Rapid, reversible activation of AgRP neurons drives feeding behavior in mice.
J Clin Invest. 2011 Apr;121(4):1424-8. doi: 10.1172/JCI46229.
10
Hypothalamic control of interoceptive hunger.
Curr Biol. 2021 Sep 13;31(17):3797-3809.e5. doi: 10.1016/j.cub.2021.06.048. Epub 2021 Jul 16.

引用本文的文献

1
Lac-Phe induces hypophagia by inhibiting AgRP neurons in mice.
Nat Metab. 2025 Sep 16. doi: 10.1038/s42255-025-01377-9.
2
Anti-obesity compounds, Semaglutide and LiPR, and PrRP do not change the proportion of human and mouse POMC+ neurons.
PLoS One. 2025 Aug 13;20(8):e0329268. doi: 10.1371/journal.pone.0329268. eCollection 2025.
3
AgRP neuron activity enhances reward-related consummatory behaviors during energy deficit in mice.
Commun Biol. 2025 Aug 4;8(1):1152. doi: 10.1038/s42003-025-08620-9.
4
A hypothalamic circuit that modulates feeding and parenting behaviours.
Nature. 2025 Jul 30. doi: 10.1038/s41586-025-09268-5.
5
Regulation of hedonic feeding rhythms by circadian clocks in leptin-receptive neurons.
Mol Metab. 2025 Jul 24;100:102221. doi: 10.1016/j.molmet.2025.102221.
6
Regulation of Feeding Behavior and Body Weight by Orexigenic Neurons in the Arcuate Nucleus.
J Obes Metab Syndr. 2025 Jul 30;34(3):213-223. doi: 10.7570/jomes25059. Epub 2025 Jul 25.
9
Angiotensin ATR expressing cells within the ventral hypothalamus modulate integrative control of cardiometabolic functions.
iScience. 2025 May 30;28(7):112797. doi: 10.1016/j.isci.2025.112797. eCollection 2025 Jul 18.
10
An alternative neural basis underlying leptin resistance.
Cell Rep. 2025 Jul 22;44(7):115863. doi: 10.1016/j.celrep.2025.115863. Epub 2025 Jun 19.

本文引用的文献

1
Hypothalamic survival circuits: blueprints for purposive behaviors.
Neuron. 2013 Mar 6;77(5):810-24. doi: 10.1016/j.neuron.2013.02.018.
3
Injections of muscimol into the paraventricular thalamic nucleus, but not mediodorsal thalamic nuclei, induce feeding in rats.
Brain Res. 2013 Jan 15;1490:128-33. doi: 10.1016/j.brainres.2012.10.043. Epub 2012 Oct 27.
4
Deconstruction of a neural circuit for hunger.
Nature. 2012 Aug 9;488(7410):172-7. doi: 10.1038/nature11270.
5
The brain circuitry underlying the temporal evolution of nausea in humans.
Cereb Cortex. 2013 Apr;23(4):806-13. doi: 10.1093/cercor/bhs073. Epub 2012 Apr 2.
6
Deciphering a neuronal circuit that mediates appetite.
Nature. 2012 Mar 14;483(7391):594-7. doi: 10.1038/nature10899.
8
9
Rapid, reversible activation of AgRP neurons drives feeding behavior in mice.
J Clin Invest. 2011 Apr;121(4):1424-8. doi: 10.1172/JCI46229.
10
AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training.
Nat Neurosci. 2011 Mar;14(3):351-5. doi: 10.1038/nn.2739. Epub 2010 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验