Suppr超能文献

基于图谱辅助模糊 C 均值法的乳腺 MRI 中纤维腺体组织自动分割及容积密度估测

Automated fibroglandular tissue segmentation and volumetric density estimation in breast MRI using an atlas-aided fuzzy C-means method.

机构信息

Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104.

出版信息

Med Phys. 2013 Dec;40(12):122302. doi: 10.1118/1.4829496.

Abstract

PURPOSE

Breast magnetic resonance imaging (MRI) plays an important role in the clinical management of breast cancer. Studies suggest that the relative amount of fibroglandular (i.e., dense) tissue in the breast as quantified in MR images can be predictive of the risk for developing breast cancer, especially for high-risk women. Automated segmentation of the fibroglandular tissue and volumetric density estimation in breast MRI could therefore be useful for breast cancer risk assessment.

METHODS

In this work the authors develop and validate a fully automated segmentation algorithm, namely, an atlas-aided fuzzy C-means (FCM-Atlas) method, to estimate the volumetric amount of fibroglandular tissue in breast MRI. The FCM-Atlas is a 2D segmentation method working on a slice-by-slice basis. FCM clustering is first applied to the intensity space of each 2D MR slice to produce an initial voxelwise likelihood map of fibroglandular tissue. Then a prior learned fibroglandular tissue likelihood atlas is incorporated to refine the initial FCM likelihood map to achieve enhanced segmentation, from which the absolute volume of the fibroglandular tissue (|FGT|) and the relative amount (i.e., percentage) of the |FGT| relative to the whole breast volume (FGT%) are computed. The authors' method is evaluated by a representative dataset of 60 3D bilateral breast MRI scans (120 breasts) that span the full breast density range of the American College of Radiology Breast Imaging Reporting and Data System. The automated segmentation is compared to manual segmentation obtained by two experienced breast imaging radiologists. Segmentation performance is assessed by linear regression, Pearson's correlation coefficients, Student's paired t-test, and Dice's similarity coefficients (DSC).

RESULTS

The inter-reader correlation is 0.97 for FGT% and 0.95 for |FGT|. When compared to the average of the two readers' manual segmentation, the proposed FCM-Atlas method achieves a correlation of r = 0.92 for FGT% and r = 0.93 for |FGT|, and the automated segmentation is not statistically significantly different (p = 0.46 for FGT% and p = 0.55 for |FGT|). The bilateral correlation between left breasts and right breasts for the FGT% is 0.94, 0.92, and 0.95 for reader 1, reader 2, and the FCM-Atlas, respectively; likewise, for the |FGT|, it is 0.92, 0.92, and 0.93, respectively. For the spatial segmentation agreement, the automated algorithm achieves a DSC of 0.69 ± 0.1 when compared to reader 1 and 0.61 ± 0.1 for reader 2, respectively, while the DSC between the two readers' manual segmentation is 0.67 ± 0.15. Additional robustness analysis shows that the segmentation performance of the authors' method is stable both with respect to selecting different cases and to varying the number of cases needed to construct the prior probability atlas. The authors' results also show that the proposed FCM-Atlas method outperforms the commonly used two-cluster FCM-alone method. The authors' method runs at ∼5 min for each 3D bilateral MR scan (56 slices) for computing the FGT% and |FGT|, compared to ∼55 min needed for manual segmentation for the same purpose.

CONCLUSIONS

The authors' method achieves robust segmentation and can serve as an efficient tool for processing large clinical datasets for quantifying the fibroglandular tissue content in breast MRI. It holds a great potential to support clinical applications in the future including breast cancer risk assessment.

摘要

目的

乳腺磁共振成像(MRI)在乳腺癌的临床管理中起着重要作用。研究表明,乳腺 MRI 图像中定量的纤维腺体(即致密)组织的相对量可以预测乳腺癌的发病风险,特别是对于高危女性。因此,纤维腺体组织的自动分割和乳腺 MRI 容积密度估计可能对乳腺癌风险评估有用。

方法

在这项工作中,作者开发并验证了一种完全自动化的分割算法,即基于图谱的模糊 C 均值(FCM-Atlas)方法,用于估计乳腺 MRI 中纤维腺体组织的容积量。FCM-Atlas 是一种在切片基础上工作的 2D 分割方法。首先将 FCM 聚类应用于每个 2D MR 切片的强度空间,以产生纤维腺体组织的初始体素似然图。然后,引入预先学习的纤维腺体组织似然图谱来细化初始 FCM 似然图,以实现增强的分割,从而计算纤维腺体组织的绝对体积(|FGT|)和相对于整个乳房体积(FGT%)的纤维腺体组织的相对量。作者的方法通过涵盖美国放射学院乳腺成像报告和数据系统(ACR BI-RADS)完整乳腺密度范围的 60 例 3D 双侧乳腺 MRI 扫描(120 个乳房)的代表性数据集进行评估。将自动分割与由两名经验丰富的乳腺成像放射科医生获得的手动分割进行比较。通过线性回归、Pearson 相关系数、学生配对 t 检验和 Dice 相似系数(DSC)评估分割性能。

结果

FGT%的读者间相关性为 0.97,|FGT|的相关性为 0.95。与两位读者的手动分割平均值相比,所提出的 FCM-Atlas 方法的相关性分别为 r = 0.92 用于 FGT%和 r = 0.93 用于 |FGT|,并且自动分割在统计学上没有显著差异(p = 0.46 用于 FGT%和 p = 0.55 用于 |FGT|)。左乳房和右乳房之间的 FGT%双侧相关性分别为 0.94、0.92 和 0.95,分别为读者 1、读者 2 和 FCM-Atlas;同样,对于 |FGT|,分别为 0.92、0.92 和 0.93。对于空间分割一致性,与读者 1 相比,自动算法的 DSC 为 0.69 ± 0.1,与读者 2 相比为 0.61 ± 0.1,而两位读者的手动分割的 DSC 为 0.67 ± 0.15。额外的稳健性分析表明,该方法的分割性能在选择不同病例和改变构建先验概率图谱所需的病例数量方面均具有稳定性。作者的结果还表明,所提出的 FCM-Atlas 方法优于常用的两聚类 FCM 方法。与用于相同目的的手动分割相比,作者的方法为每个 3D 双侧 MR 扫描(56 个切片)计算 FGT%和 |FGT|,运行时间约为 5 分钟。

结论

作者的方法实现了稳健的分割,可以作为处理用于量化乳腺 MRI 中纤维腺体组织含量的大型临床数据集的有效工具。它在未来的临床应用中具有很大的潜力,包括乳腺癌风险评估。

相似文献

2
Using deep learning to segment breast and fibroglandular tissue in MRI volumes.
Med Phys. 2017 Feb;44(2):533-546. doi: 10.1002/mp.12079.
5
Segmentation of whole breast and fibroglandular tissue using nnU-Net in dynamic contrast enhanced MR images.
Magn Reson Imaging. 2021 Oct;82:31-41. doi: 10.1016/j.mri.2021.06.017. Epub 2021 Jun 18.
6
Fully automated segmentation of whole breast using dynamic programming in dynamic contrast enhanced MR images.
Med Phys. 2017 Jun;44(6):2400-2414. doi: 10.1002/mp.12254. Epub 2017 May 4.
7
Automated fibroglandular tissue segmentation in breast MRI using generative adversarial networks.
Phys Med Biol. 2020 May 19;65(10):105006. doi: 10.1088/1361-6560/ab7e7f.
9
Atlas-based probabilistic fibroglandular tissue segmentation in breast MRI.
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):437-45. doi: 10.1007/978-3-642-33418-4_54.
10
Comparison of 3-point Dixon imaging and fuzzy C-means clustering methods for breast density measurement.
J Magn Reson Imaging. 2013 Aug;38(2):474-81. doi: 10.1002/jmri.24002. Epub 2013 Jan 4.

引用本文的文献

1
Impact of menopause and age on breast density and background parenchymal enhancement in dynamic contrast-enhanced magnetic resonance imaging.
J Med Imaging (Bellingham). 2025 Nov;12(Suppl 2):S22002. doi: 10.1117/1.JMI.12.S2.S22002. Epub 2025 Mar 11.
3
The top 100 most-cited articles on artificial intelligence in breast radiology: a bibliometric analysis.
Insights Imaging. 2024 Dec 12;15(1):297. doi: 10.1186/s13244-024-01869-4.
5
Vascularity and Dynamic Contrast-Enhanced Breast Magnetic Resonance Imaging.
Front Radiol. 2021 Dec 9;1:735567. doi: 10.3389/fradi.2021.735567. eCollection 2021.
6
Obesity and metabolic dysfunction correlate with background parenchymal enhancement in premenopausal women.
Obesity (Silver Spring). 2023 Feb;31(2):479-486. doi: 10.1002/oby.23649. Epub 2023 Jan 11.
7
Fully automated breast segmentation on spiral breast computed tomography images.
J Appl Clin Med Phys. 2022 Oct;23(10):e13726. doi: 10.1002/acm2.13726. Epub 2022 Aug 9.
8
Novelty detection for metabolic dynamics established on breast cancer tissue using 2D NMR TOCSY spectra.
Comput Struct Biotechnol J. 2022 Jun 1;20:2965-2977. doi: 10.1016/j.csbj.2022.05.050. eCollection 2022.
9
Multimodality Imaging of Breast Parenchymal Density and Correlation with Risk Assessment.
Curr Breast Cancer Rep. 2019 Mar;11(1):23-33. doi: 10.1007/s12609-019-0302-6. Epub 2019 Jan 17.
10
Proton density water fraction as a reproducible MR-based measurement of breast density.
Magn Reson Med. 2022 Apr;87(4):1742-1757. doi: 10.1002/mrm.29076. Epub 2021 Nov 14.

本文引用的文献

2
Comparison of 3-point Dixon imaging and fuzzy C-means clustering methods for breast density measurement.
J Magn Reson Imaging. 2013 Aug;38(2):474-81. doi: 10.1002/jmri.24002. Epub 2013 Jan 4.
3
Atlas-based probabilistic fibroglandular tissue segmentation in breast MRI.
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):437-45. doi: 10.1007/978-3-642-33418-4_54.
4
3D multi-parametric breast MRI segmentation using hierarchical support vector machine with coil sensitivity correction.
Acad Radiol. 2013 Feb;20(2):137-47. doi: 10.1016/j.acra.2012.08.016. Epub 2012 Oct 23.
5
Comparison of breast tissue measurements using magnetic resonance imaging, digital mammography and a mathematical algorithm.
Phys Med Biol. 2012 Nov 7;57(21):6903-27. doi: 10.1088/0031-9155/57/21/6903. Epub 2012 Oct 9.
8
Background parenchymal enhancement at breast MR imaging and breast cancer risk.
Radiology. 2011 Jul;260(1):50-60. doi: 10.1148/radiol.11102156. Epub 2011 Apr 14.
10
Multimodality screening of high-risk women: a prospective cohort study.
J Clin Oncol. 2009 Dec 20;27(36):6124-8. doi: 10.1200/JCO.2009.24.4277. Epub 2009 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验