Suppr超能文献

转录因子 LEF1 和 B9L 可保护 β-连环蛋白免于 Axin 使其失活,从而使结直肠癌细胞对 Tankyrase 抑制剂不敏感。

LEF1 and B9L shield β-catenin from inactivation by Axin, desensitizing colorectal cancer cells to tankyrase inhibitors.

机构信息

Authors' Affiliation: MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, United Kingdom.

出版信息

Cancer Res. 2014 Mar 1;74(5):1495-505. doi: 10.1158/0008-5472.CAN-13-2682. Epub 2014 Jan 13.

Abstract

Hyperactive β-catenin drives colorectal cancer, yet inhibiting its activity remains a formidable challenge. Interest is mounting in tankyrase inhibitors (TNKSi), which destabilize β-catenin through stabilizing Axin. Here, we confirm that TNKSi inhibit Wnt-induced transcription, similarly to carnosate, which reduces the transcriptional activity of β-catenin by blocking its binding to BCL9, and attenuates intestinal tumors in Apc(Min) mice. By contrast, β-catenin's activity is unresponsive to TNKSi in colorectal cancer cells and in cells after prolonged Wnt stimulation. This TNKSi insensitivity is conferred by β-catenin's association with LEF1 and BCL9-2/B9L, which accumulate during Wnt stimulation, thereby providing a feed-forward loop that converts transient into chronic β-catenin signaling. This limits the therapeutic value of TNKSi in colorectal carcinomas, most of which express high LEF1 levels. Our study provides proof-of-concept that the successful inhibition of oncogenic β-catenin in colorectal cancer requires the targeting of its interaction with LEF1 and/or BCL9/B9L, as exemplified by carnosate.

摘要

过度活跃的 β-连环蛋白驱动结直肠癌,但抑制其活性仍然是一个巨大的挑战。人们对端锚聚合酶抑制剂(TNKSi)越来越感兴趣,它通过稳定轴蛋白来使 β-连环蛋白不稳定。在这里,我们证实 TNKSi 抑制 Wnt 诱导的转录,与肉毒碱类似,肉毒碱通过阻止 β-连环蛋白与 BCL9 的结合来降低其转录活性,并减弱 Apc(Min)小鼠的肠道肿瘤。相比之下,TNKSi 在结直肠癌细胞中和长时间 Wnt 刺激后的细胞中对 β-连环蛋白的活性没有反应。这种 TNKSi 不敏感是由 β-连环蛋白与 LEF1 和 BCL9-2/B9L 的关联赋予的,这些蛋白在 Wnt 刺激期间积累,从而提供了一个正反馈回路,将瞬时转化为慢性 β-连环蛋白信号。这限制了 TNKSi 在结直肠癌中的治疗价值,其中大多数表达高水平的 LEF1。我们的研究提供了概念验证,即成功抑制结直肠癌中的致癌 β-连环蛋白需要靶向其与 LEF1 和/或 BCL9/B9L 的相互作用,以肉毒碱为例。

相似文献

1
LEF1 and B9L shield β-catenin from inactivation by Axin, desensitizing colorectal cancer cells to tankyrase inhibitors.
Cancer Res. 2014 Mar 1;74(5):1495-505. doi: 10.1158/0008-5472.CAN-13-2682. Epub 2014 Jan 13.
3
The function of BCL9 in Wnt/beta-catenin signaling and colorectal cancer cells.
BMC Cancer. 2008 Jul 15;8:199. doi: 10.1186/1471-2407-8-199.
5
A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth.
Cancer Res. 2013 May 15;73(10):3132-44. doi: 10.1158/0008-5472.CAN-12-4562. Epub 2013 Mar 28.
6
SPDEF Induces Quiescence of Colorectal Cancer Cells by Changing the Transcriptional Targets of β-catenin.
Gastroenterology. 2017 Jul;153(1):205-218.e8. doi: 10.1053/j.gastro.2017.03.048. Epub 2017 Apr 5.
7
RK-287107, a potent and specific tankyrase inhibitor, blocks colorectal cancer cell growth in a preclinical model.
Cancer Sci. 2018 Dec;109(12):4003-4014. doi: 10.1111/cas.13805. Epub 2018 Oct 20.
8
Mutations as a Potential Biomarker for Sensitivity to Tankyrase Inhibitors in Colorectal Cancer.
Mol Cancer Ther. 2017 Apr;16(4):752-762. doi: 10.1158/1535-7163.MCT-16-0578. Epub 2017 Feb 8.
9
AXIN2 is a non-redundant regulator of AXIN1 stability and β-catenin in colorectal cancer cells.
FEBS J. 2025 Mar;292(5):990-994. doi: 10.1111/febs.17336. Epub 2024 Nov 25.
10
Inhibition of tankyrases induces Axin stabilization and blocks Wnt signalling in breast cancer cells.
PLoS One. 2012;7(11):e48670. doi: 10.1371/journal.pone.0048670. Epub 2012 Nov 7.

引用本文的文献

2
Novel immunotherapeutics against LGR5 to target multiple cancer types.
EMBO Mol Med. 2024 Sep;16(9):2233-2261. doi: 10.1038/s44321-024-00121-2. Epub 2024 Aug 21.
3
A novel TNKS/USP25 inhibitor blocks the Wnt pathway to overcome multi-drug resistance in TNKS-overexpressing colorectal cancer.
Acta Pharm Sin B. 2024 Jan;14(1):207-222. doi: 10.1016/j.apsb.2023.10.013. Epub 2023 Oct 27.
4
Tankyrase: a promising therapeutic target with pleiotropic action.
Naunyn Schmiedebergs Arch Pharmacol. 2023 Dec;396(12):3363-3374. doi: 10.1007/s00210-023-02576-5. Epub 2023 Jun 20.
6
Principles and functions of condensate modifying drugs.
Front Mol Biosci. 2022 Nov 22;9:1007744. doi: 10.3389/fmolb.2022.1007744. eCollection 2022.
7
New ZW4864 Derivatives as Small-Molecule Inhibitors for the β-Catenin/BCL9 Protein-Protein Interaction.
ACS Med Chem Lett. 2022 Apr 25;13(5):865-870. doi: 10.1021/acsmedchemlett.2c00068. eCollection 2022 May 12.
8
The interactions of Bcl9/Bcl9L with β-catenin and Pygopus promote breast cancer growth, invasion, and metastasis.
Oncogene. 2021 Oct;40(43):6195-6209. doi: 10.1038/s41388-021-02016-9. Epub 2021 Sep 20.
9
Discovery of an Orally Bioavailable Small-Molecule Inhibitor for the β-Catenin/B-Cell Lymphoma 9 Protein-Protein Interaction.
J Med Chem. 2021 Aug 26;64(16):12109-12131. doi: 10.1021/acs.jmedchem.1c00742. Epub 2021 Aug 12.
10
Engineering mono- and multi-valent inhibitors on a modular scaffold.
Chem Sci. 2020 Dec 17;12(3):880-895. doi: 10.1039/d0sc03175e. eCollection 2021 Jan 21.

本文引用的文献

2
Tankyrases as drug targets.
FEBS J. 2013 Aug;280(15):3576-93. doi: 10.1111/febs.12320. Epub 2013 Jun 18.
3
A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth.
Cancer Res. 2013 May 15;73(10):3132-44. doi: 10.1158/0008-5472.CAN-12-4562. Epub 2013 Mar 28.
4
Kinetic responses of β-catenin specify the sites of Wnt control.
Science. 2012 Dec 7;338(6112):1337-40. doi: 10.1126/science.1228734. Epub 2012 Nov 8.
5
Targeted disruption of the BCL9/β-catenin complex inhibits oncogenic Wnt signaling.
Sci Transl Med. 2012 Aug 22;4(148):148ra117. doi: 10.1126/scitranslmed.3003808.
6
Wnt/β-catenin signaling and disease.
Cell. 2012 Jun 8;149(6):1192-205. doi: 10.1016/j.cell.2012.05.012.
8
Drugging Wnt signalling in cancer.
EMBO J. 2012 Jun 13;31(12):2737-46. doi: 10.1038/emboj.2012.126. Epub 2012 May 22.
9
Wnt signalling pathway parameters for mammalian cells.
PLoS One. 2012;7(2):e31882. doi: 10.1371/journal.pone.0031882. Epub 2012 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验