Suppr超能文献

从特权体细胞状态进行非随机重编程。

Nonstochastic reprogramming from a privileged somatic cell state.

机构信息

Department of Cell Biology, Yale University, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA.

Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Cell Biology, Second Military Medical University, Shanghai 200433, China.

出版信息

Cell. 2014 Feb 13;156(4):649-62. doi: 10.1016/j.cell.2014.01.020. Epub 2014 Jan 30.

Abstract

Reprogramming somatic cells to induced pluripotency by Yamanaka factors is usually slow and inefficient and is thought to be a stochastic process. We identified a privileged somatic cell state, from which acquisition of pluripotency could occur in a nonstochastic manner. Subsets of murine hematopoietic progenitors are privileged whose progeny cells predominantly adopt the pluripotent fate with activation of endogenous Oct4 locus after four to five divisions in reprogramming conditions. Privileged cells display an ultrafast cell cycle of ∼8 hr. In fibroblasts, a subpopulation cycling at a similar ultrafast speed is observed after 6 days of factor expression and is increased by p53 knockdown. This ultrafast cycling population accounts for >99% of the bulk reprogramming activity in wild-type or p53 knockdown fibroblasts. Our data demonstrate that the stochastic nature of reprogramming can be overcome in a privileged somatic cell state and suggest that cell-cycle acceleration toward a critical threshold is an important bottleneck for reprogramming. PAPERCLIP:

摘要

通过山中因子将体细胞重编程为诱导多能性通常较慢且效率较低,被认为是一种随机过程。我们鉴定了一种特权体细胞状态,从中可以以非随机的方式获得多能性。小鼠造血祖细胞的亚群是特权的,其后代细胞在重编程条件下经过四到五次分裂后,主要通过内源 Oct4 基因座的激活而采用多能性命运。特权细胞显示出超快的细胞周期,约为 8 小时。在成纤维细胞中,在表达因子 6 天后观察到以类似超快速度循环的亚群,并通过 p53 敲低增加。这个超快循环群体占野生型或 p53 敲低成纤维细胞中大部分重编程活性的 >99%。我们的数据表明,重编程的随机性可以在特权体细胞状态下克服,并表明向关键阈值的细胞周期加速是重编程的一个重要瓶颈。

相似文献

1
Nonstochastic reprogramming from a privileged somatic cell state.
Cell. 2014 Feb 13;156(4):649-62. doi: 10.1016/j.cell.2014.01.020. Epub 2014 Jan 30.
2
Speeding to pluripotency.
Cell. 2014 Feb 13;156(4):631-2. doi: 10.1016/j.cell.2014.01.046.
4
Single cell analysis reveals the stochastic phase of reprogramming to pluripotency is an ordered probabilistic process.
PLoS One. 2014 Apr 17;9(4):e95304. doi: 10.1371/journal.pone.0095304. eCollection 2014.
5
Tox4 modulates cell fate reprogramming.
J Cell Sci. 2019 Oct 22;132(20):jcs232223. doi: 10.1242/jcs.232223.
6
Human fibroblast reprogramming to pluripotent stem cells regulated by the miR19a/b-PTEN axis.
PLoS One. 2014 Apr 16;9(4):e95213. doi: 10.1371/journal.pone.0095213. eCollection 2014.
7
Reprogramming towards pluripotency requires AID-dependent DNA demethylation.
Nature. 2010 Feb 25;463(7284):1042-7. doi: 10.1038/nature08752.
8
MicroRNA-Mediated Reprogramming of Somatic Cells into Induced Pluripotent Stem Cells.
Methods Mol Biol. 2015;1330:29-36. doi: 10.1007/978-1-4939-2848-4_3.

引用本文的文献

1
Molecular basis of cell fate plasticity - insights from the privileged cells.
Curr Opin Genet Dev. 2025 Aug;93:102354. doi: 10.1016/j.gde.2025.102354. Epub 2025 May 5.
3
Proliferation history and transcription factor levels drive direct conversion to motor neurons.
Cell Syst. 2025 Apr 16;16(4):101205. doi: 10.1016/j.cels.2025.101205. Epub 2025 Mar 13.
4
Glutathione accelerates the cell cycle and cellular reprogramming in plant regeneration.
Dev Cell. 2025 Apr 21;60(8):1153-1167.e6. doi: 10.1016/j.devcel.2024.12.019. Epub 2025 Jan 3.
6
Manipulating cell fate through reprogramming: approaches and applications.
Development. 2024 Oct 1;151(19). doi: 10.1242/dev.203090. Epub 2024 Sep 30.
7
Rewinding the Tape to Identify Intrinsic Determinants of Reprogramming Potential.
Cell Reprogram. 2024 Aug;26(4):117-119. doi: 10.1089/cell.2024.0035. Epub 2024 Aug 8.
8
The progress of induced pluripotent stem cells derived from pigs: a mini review of recent advances.
Front Cell Dev Biol. 2024 Jun 24;12:1371240. doi: 10.3389/fcell.2024.1371240. eCollection 2024.
9
Macrophage transplantation rescues RNASET2-deficient leukodystrophy by replacing deficient microglia in a zebrafish model.
Proc Natl Acad Sci U S A. 2024 May 21;121(21):e2321496121. doi: 10.1073/pnas.2321496121. Epub 2024 May 16.
10
Biphasic regulation of epigenetic state by matrix stiffness during cell reprogramming.
Sci Adv. 2024 Feb 16;10(7):eadk0639. doi: 10.1126/sciadv.adk0639. Epub 2024 Feb 14.

本文引用的文献

1
The cell-cycle state of stem cells determines cell fate propensity.
Cell. 2013 Sep 26;155(1):135-47. doi: 10.1016/j.cell.2013.08.031.
2
Deterministic direct reprogramming of somatic cells to pluripotency.
Nature. 2013 Oct 3;502(7469):65-70. doi: 10.1038/nature12587. Epub 2013 Sep 18.
3
Positive feedback between PU.1 and the cell cycle controls myeloid differentiation.
Science. 2013 Aug 9;341(6146):670-3. doi: 10.1126/science.1240831. Epub 2013 Jul 18.
4
NuRD blocks reprogramming of mouse somatic cells into pluripotent stem cells.
Stem Cells. 2013 Jul;31(7):1278-86. doi: 10.1002/stem.1374.
6
Two methods for full-length RNA sequencing for low quantities of cells and single cells.
Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):594-9. doi: 10.1073/pnas.1217322109. Epub 2012 Dec 24.
7
A molecular roadmap of reprogramming somatic cells into iPS cells.
Cell. 2012 Dec 21;151(7):1617-32. doi: 10.1016/j.cell.2012.11.039.
8
H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs.
Nat Genet. 2013 Jan;45(1):34-42. doi: 10.1038/ng.2491. Epub 2012 Dec 2.
10
Cyclin D2 in the basal process of neural progenitors is linked to non-equivalent cell fates.
EMBO J. 2012 Apr 18;31(8):1879-92. doi: 10.1038/emboj.2012.43. Epub 2012 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验