Li Hsiu-Ping, Daniel Benjamin, Creeley Danielle, Grandbois Russell, Zhang Saijin, Xu Chen, Ho Yi-Fang, Schwehr Kathy A, Kaplan Daniel I, Santschi Peter H, Hansel Colleen M, Yeager Chris M
Department of Marine Science, Texas A&M University at Galveston, Galveston, Texas, USA.
Appl Environ Microbiol. 2014 May;80(9):2693-9. doi: 10.1128/AEM.00400-14. Epub 2014 Feb 21.
The release of radioactive iodine (i.e., iodine-129 and iodine-131) from nuclear reprocessing facilities is a potential threat to human health. The fate and transport of iodine are determined primarily by its redox status, but processes that affect iodine oxidation states in the environment are poorly characterized. Given the difficulty in removing electrons from iodide (I(-)), naturally occurring iodide oxidation processes require strong oxidants, such as Mn oxides or microbial enzymes. In this study, we examine iodide oxidation by a marine bacterium, Roseobacter sp. AzwK-3b, which promotes Mn(II) oxidation by catalyzing the production of extracellular superoxide (O2(-)). In the absence of Mn(2+), Roseobacter sp. AzwK-3b cultures oxidized ∼90% of the provided iodide (10 μM) within 6 days, whereas in the presence of Mn(II), iodide oxidation occurred only after Mn(IV) formation ceased. Iodide oxidation was not observed during incubations in spent medium or with whole cells under anaerobic conditions or following heat treatment (boiling). Furthermore, iodide oxidation was significantly inhibited in the presence of superoxide dismutase and diphenylene iodonium (a general inhibitor of NADH oxidoreductases). In contrast, the addition of exogenous NADH enhanced iodide oxidation. Taken together, the results indicate that iodide oxidation was mediated primarily by extracellular superoxide generated by Roseobacter sp. AzwK-3b and not by the Mn oxides formed by this organism. Considering that extracellular superoxide formation is a widespread phenomenon among marine and terrestrial bacteria, this could represent an important pathway for iodide oxidation in some environments.
核后处理设施中放射性碘(即碘 - 129和碘 - 131)的释放对人类健康构成潜在威胁。碘的归宿和迁移主要由其氧化还原状态决定,但影响环境中碘氧化态的过程却鲜有明确的特征描述。鉴于从碘化物(I(-))中去除电子存在困难,自然发生的碘化物氧化过程需要强氧化剂,如锰氧化物或微生物酶。在本研究中,我们检测了海洋细菌玫瑰杆菌属AzwK - 3b对碘化物的氧化作用,该细菌通过催化细胞外超氧化物(O2(-))的产生来促进Mn(II)的氧化。在没有Mn(2+)的情况下,玫瑰杆菌属AzwK - 3b培养物在6天内氧化了约90%提供的碘化物(10 μM),而在有Mn(II)存在时,碘化物氧化仅在Mn(IV)形成停止后才发生。在乏培养基中培养、在厌氧条件下用完整细胞培养或热处理(煮沸)后均未观察到碘化物氧化。此外,在超氧化物歧化酶和二亚苯基碘鎓(NADH氧化还原酶的一般抑制剂)存在下,碘化物氧化受到显著抑制。相反,添加外源NADH可增强碘化物氧化。综上所述,结果表明碘化物氧化主要由玫瑰杆菌属AzwK - 3b产生的细胞外超氧化物介导,而非由该生物体形成的锰氧化物介导。鉴于细胞外超氧化物的形成在海洋和陆地细菌中是一种普遍现象,这可能代表了某些环境中碘化物氧化的重要途径。