Suppr超能文献

一种锰氧化细菌产生的超氧化物促进碘化物氧化。

Superoxide production by a manganese-oxidizing bacterium facilitates iodide oxidation.

作者信息

Li Hsiu-Ping, Daniel Benjamin, Creeley Danielle, Grandbois Russell, Zhang Saijin, Xu Chen, Ho Yi-Fang, Schwehr Kathy A, Kaplan Daniel I, Santschi Peter H, Hansel Colleen M, Yeager Chris M

机构信息

Department of Marine Science, Texas A&M University at Galveston, Galveston, Texas, USA.

出版信息

Appl Environ Microbiol. 2014 May;80(9):2693-9. doi: 10.1128/AEM.00400-14. Epub 2014 Feb 21.

Abstract

The release of radioactive iodine (i.e., iodine-129 and iodine-131) from nuclear reprocessing facilities is a potential threat to human health. The fate and transport of iodine are determined primarily by its redox status, but processes that affect iodine oxidation states in the environment are poorly characterized. Given the difficulty in removing electrons from iodide (I(-)), naturally occurring iodide oxidation processes require strong oxidants, such as Mn oxides or microbial enzymes. In this study, we examine iodide oxidation by a marine bacterium, Roseobacter sp. AzwK-3b, which promotes Mn(II) oxidation by catalyzing the production of extracellular superoxide (O2(-)). In the absence of Mn(2+), Roseobacter sp. AzwK-3b cultures oxidized ∼90% of the provided iodide (10 μM) within 6 days, whereas in the presence of Mn(II), iodide oxidation occurred only after Mn(IV) formation ceased. Iodide oxidation was not observed during incubations in spent medium or with whole cells under anaerobic conditions or following heat treatment (boiling). Furthermore, iodide oxidation was significantly inhibited in the presence of superoxide dismutase and diphenylene iodonium (a general inhibitor of NADH oxidoreductases). In contrast, the addition of exogenous NADH enhanced iodide oxidation. Taken together, the results indicate that iodide oxidation was mediated primarily by extracellular superoxide generated by Roseobacter sp. AzwK-3b and not by the Mn oxides formed by this organism. Considering that extracellular superoxide formation is a widespread phenomenon among marine and terrestrial bacteria, this could represent an important pathway for iodide oxidation in some environments.

摘要

核后处理设施中放射性碘(即碘 - 129和碘 - 131)的释放对人类健康构成潜在威胁。碘的归宿和迁移主要由其氧化还原状态决定,但影响环境中碘氧化态的过程却鲜有明确的特征描述。鉴于从碘化物(I(-))中去除电子存在困难,自然发生的碘化物氧化过程需要强氧化剂,如锰氧化物或微生物酶。在本研究中,我们检测了海洋细菌玫瑰杆菌属AzwK - 3b对碘化物的氧化作用,该细菌通过催化细胞外超氧化物(O2(-))的产生来促进Mn(II)的氧化。在没有Mn(2+)的情况下,玫瑰杆菌属AzwK - 3b培养物在6天内氧化了约90%提供的碘化物(10 μM),而在有Mn(II)存在时,碘化物氧化仅在Mn(IV)形成停止后才发生。在乏培养基中培养、在厌氧条件下用完整细胞培养或热处理(煮沸)后均未观察到碘化物氧化。此外,在超氧化物歧化酶和二亚苯基碘鎓(NADH氧化还原酶的一般抑制剂)存在下,碘化物氧化受到显著抑制。相反,添加外源NADH可增强碘化物氧化。综上所述,结果表明碘化物氧化主要由玫瑰杆菌属AzwK - 3b产生的细胞外超氧化物介导,而非由该生物体形成的锰氧化物介导。鉴于细胞外超氧化物的形成在海洋和陆地细菌中是一种普遍现象,这可能代表了某些环境中碘化物氧化的重要途径。

相似文献

1
Superoxide production by a manganese-oxidizing bacterium facilitates iodide oxidation.
Appl Environ Microbiol. 2014 May;80(9):2693-9. doi: 10.1128/AEM.00400-14. Epub 2014 Feb 21.
3
Coupled photochemical and enzymatic Mn(II) oxidation pathways of a planktonic Roseobacter-Like bacterium.
Appl Environ Microbiol. 2006 May;72(5):3543-9. doi: 10.1128/AEM.72.5.3543-3549.2006.
4
Extracellular haem peroxidases mediate Mn(II) oxidation in a marine Roseobacter bacterium via superoxide production.
Environ Microbiol. 2015 Oct;17(10):3925-36. doi: 10.1111/1462-2920.12893. Epub 2015 Jun 11.
5
Mn(II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction.
Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12621-5. doi: 10.1073/pnas.1203885109. Epub 2012 Jul 16.
7
Biologically mediated abiotic degradation (BMAD) of bisphenol A by manganese-oxidizing bacteria.
J Hazard Mater. 2021 Sep 5;417:125987. doi: 10.1016/j.jhazmat.2021.125987. Epub 2021 May 3.
8
Algae promotes the biogenic oxidation of Mn(II) by accelerated extracellular superoxide production.
Water Res. 2024 Sep 1;261:122063. doi: 10.1016/j.watres.2024.122063. Epub 2024 Jul 8.
9
Chromium(iii) oxidation by biogenic manganese oxides with varying structural ripening.
Environ Sci Process Impacts. 2014 Sep 20;16(9):2127-36. doi: 10.1039/c4em00077c. Epub 2014 Jul 31.
10
A putative multicopper oxidase, IoxA, is involved in iodide oxidation by Roseovarius sp. strain A-2.
Biosci Biotechnol Biochem. 2015;79(11):1898-905. doi: 10.1080/09168451.2015.1052767. Epub 2015 Jun 4.

引用本文的文献

3
Reactive oxygen species in the world ocean and their impacts on marine ecosystems.
Redox Biol. 2022 Jun;52:102285. doi: 10.1016/j.redox.2022.102285. Epub 2022 Mar 25.
4
Spatial Heterogeneity in Particle-Associated, Light-Independent Superoxide Production Within Productive Coastal Waters.
J Geophys Res Oceans. 2020 Oct;125(10):e2020JC016747. doi: 10.1029/2020JC016747. Epub 2020 Oct 16.
5
Use of Iodine to Biofortify and Promote Growth and Stress Tolerance in Crops.
Front Plant Sci. 2016 Aug 23;7:1146. doi: 10.3389/fpls.2016.01146. eCollection 2016.

本文引用的文献

1
Radioiodine Biogeochemistry and Prevalence in Groundwater.
Crit Rev Environ Sci Technol. 2014 Oct 18;44(20):2287-2335. doi: 10.1080/10643389.2013.828273.
2
Widespread production of extracellular superoxide by heterotrophic bacteria.
Science. 2013 Jun 7;340(6137):1223-6. doi: 10.1126/science.1237331. Epub 2013 May 2.
4
Iodine-129 in seawater offshore Fukushima: distribution, inorganic speciation, sources, and budget.
Environ Sci Technol. 2013 Apr 2;47(7):3091-8. doi: 10.1021/es304460k. Epub 2013 Mar 18.
5
Cancer risk after medical exposure to radioactive iodine in benign thyroid diseases: a meta-analysis.
Endocr Relat Cancer. 2012 Sep 14;19(5):645-55. doi: 10.1530/ERC-12-0176. Print 2012 Oct.
6
The influence of extracellular superoxide on iron redox chemistry and bioavailability to aquatic microorganisms.
Front Microbiol. 2012 Apr 11;3:124. doi: 10.3389/fmicb.2012.00124. eCollection 2012.
7
Bacterial production of organic acids enhances H2O2-dependent iodide oxidation.
Environ Sci Technol. 2012 May 1;46(9):4837-44. doi: 10.1021/es203683v. Epub 2012 Apr 9.
8
Iodide oxidation by a novel multicopper oxidase from the alphaproteobacterium strain Q-1.
Appl Environ Microbiol. 2012 Jun;78(11):3941-9. doi: 10.1128/AEM.00084-12. Epub 2012 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验