Suppr超能文献

通过多尺度无监督结构学习发现全脑神经行为图谱。

Discovery of brainwide neural-behavioral maps via multiscale unsupervised structure learning.

机构信息

Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

Science. 2014 Apr 25;344(6182):386-92. doi: 10.1126/science.1250298. Epub 2014 Mar 27.

Abstract

A single nervous system can generate many distinct motor patterns. Identifying which neurons and circuits control which behaviors has been a laborious piecemeal process, usually for one observer-defined behavior at a time. We present a fundamentally different approach to neuron-behavior mapping. We optogenetically activated 1054 identified neuron lines in Drosophila larvae and tracked the behavioral responses from 37,780 animals. Application of multiscale unsupervised structure learning methods to the behavioral data enabled us to identify 29 discrete, statistically distinguishable, observer-unbiased behavioral phenotypes. Mapping the neural lines to the behavior(s) they evoke provides a behavioral reference atlas for neuron subsets covering a large fraction of larval neurons. This atlas is a starting point for connectivity- and activity-mapping studies to further investigate the mechanisms by which neurons mediate diverse behaviors.

摘要

单一的神经系统可以产生许多不同的运动模式。确定哪些神经元和电路控制哪些行为一直是一项艰苦的零碎过程,通常一次只能针对一个观察者定义的行为。我们提出了一种截然不同的神经元-行为映射方法。我们在果蝇幼虫中光遗传学地激活了 1054 条已识别的神经元系,并从 37780 只动物中跟踪了行为反应。对行为数据应用多尺度无监督结构学习方法使我们能够识别出 29 种离散的、可区分的、无观察者偏见的行为表型。将神经线路映射到它们引起的行为上,为覆盖幼虫神经元大部分的神经元子集提供了行为参考图谱。该图谱是连接性和活动映射研究的起点,可进一步研究神经元介导不同行为的机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验