Suppr超能文献

干眼症患者治疗反应的图像引导评估与监测

Image-guided evaluation and monitoring of treatment response in patients with dry eye disease.

作者信息

Qazi Yureeda, Aggarwal Shruti, Hamrah Pedram

机构信息

Cornea and Ocular Surface Imaging Center, Department of Ophthalmology- Cornea Service, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA.

出版信息

Graefes Arch Clin Exp Ophthalmol. 2014 Jun;252(6):857-872. doi: 10.1007/s00417-014-2618-2. Epub 2014 Apr 4.

Abstract

BACKGROUND

Dry eye disease (DED) is one of the most common ocular disorders worldwide. The pathophysiological mechanisms involved in the development of DED are not well-understood, and thus treating DED has been a significant challenge for ophthalmologists. Most of the currently available diagnostic tests demonstrate low correlation to patient symptoms and have low reproducibility.

METHODS

Recently, sophisticated in vivo imaging modalities have become available for patient care, namely, in vivo confocal microscopy (IVCM) and optical coherence tomography (OCT). These emerging modalities are powerful and non-invasive, allowing real-time visualization of cellular and anatomical structures of the cornea and ocular surface. Here we discuss how, by providing both qualitative and quantitative assessment, these techniques can be used to demonstrate early subclinical disease, grade layer-by-layer severity, and allow monitoring of disease severity by cellular alterations. Imaging-guided stratification of patients may also be possible in conjunction with clinical examination methods.

CONCLUSIONS

Visualization of subclinical changes and stratification of patients in vivo allows objective image-guided evaluation of tailored treatment response based on cellular morphological alterations specific to each patient. This image-guided approach to DED may ultimately improve patient outcomes and make it possible to study the efficacy of novel therapies in clinical trials.

摘要

背景

干眼症(DED)是全球最常见的眼部疾病之一。干眼症发生发展过程中涉及的病理生理机制尚未完全明确,因此,对眼科医生而言,治疗干眼症一直是一项重大挑战。目前大多数可用的诊断测试与患者症状的相关性较低,且重现性也较差。

方法

近来,先进的体内成像技术已应用于患者护理,即体内共聚焦显微镜检查(IVCM)和光学相干断层扫描(OCT)。这些新兴技术功能强大且无创,能够实时观察角膜和眼表的细胞及解剖结构。在此,我们将讨论通过提供定性和定量评估,这些技术如何用于显示早期亚临床疾病、逐层分级严重程度,并通过细胞改变监测疾病严重程度。结合临床检查方法,对患者进行成像引导分层也可能实现。

结论

体内亚临床变化的可视化以及患者分层能够基于每位患者特有的细胞形态改变,对量身定制的治疗反应进行客观的图像引导评估。这种针对干眼症的图像引导方法最终可能改善患者预后,并使在临床试验中研究新型疗法的疗效成为可能。

相似文献

1
Image-guided evaluation and monitoring of treatment response in patients with dry eye disease.
Graefes Arch Clin Exp Ophthalmol. 2014 Jun;252(6):857-872. doi: 10.1007/s00417-014-2618-2. Epub 2014 Apr 4.
2
In vivo confocal microscopy in dry eye disease and related conditions.
Semin Ophthalmol. 2012 Sep-Nov;27(5-6):138-48. doi: 10.3109/08820538.2012.711416.
3
Effects of corneal nerve density on the response to treatment in dry eye disease.
Ophthalmology. 2015 Apr;122(4):662-8. doi: 10.1016/j.ophtha.2014.11.006. Epub 2014 Dec 24.
4
Confocal Microscopy Evaluation of Meibomian Gland Dysfunction in Dry Eye Patients with Different Symptoms.
Chin Med J (Engl). 2016 Nov 5;129(21):2617-2622. doi: 10.4103/0366-6999.192782.
5
Advances in dry eye imaging: the present and beyond.
Br J Ophthalmol. 2018 Mar;102(3):295-301. doi: 10.1136/bjophthalmol-2017-310759. Epub 2017 Oct 5.
6
[A new classification for meibomian gland diseases with in vivo confocal microscopy].
J Fr Ophtalmol. 2016 Mar;39(3):239-47. doi: 10.1016/j.jfo.2015.07.015. Epub 2016 Feb 16.
7
[In vivo Meibomian gland imaging techniques: A review of the literature (French translation of the article)].
J Fr Ophtalmol. 2020 Jun;43(6):484-493. doi: 10.1016/j.jfo.2019.10.009. Epub 2020 May 11.
8
Evaluation of dry eye and meibomian gland dysfunction with meibography in patients with rosacea.
Cornea. 2015 May;34(5):497-9. doi: 10.1097/ICO.0000000000000393.
9
Improving Care for Patients with Dry Eye Symptoms: See What the Experts Say.
Optom Vis Sci. 2015 Sep;92(9):e342-9. doi: 10.1097/OPX.0000000000000651.
10
A Pragmatic Approach to the Management of Dry Eye Disease: Evidence into Practice.
Optom Vis Sci. 2015 Sep;92(9):957-66. doi: 10.1097/OPX.0000000000000653.

引用本文的文献

1
Artificial intelligence in cornea and ocular surface diseases.
Saudi J Ophthalmol. 2023 Sep 16;37(3):179-184. doi: 10.4103/sjopt.sjopt_52_23. eCollection 2023 Jul-Sep.
2
Evaluation of effectiveness of eye massage therapy via classification of periocular images.
Multimed Tools Appl. 2022;81(4):5743-5760. doi: 10.1007/s11042-021-11789-w. Epub 2021 Dec 29.
4
A Review of Imaging Biomarkers of the Ocular Surface.
Eye Contact Lens. 2020 Mar;46 Suppl 2(Suppl 2):S84-S105. doi: 10.1097/ICL.0000000000000684.
5
Corneal pain and experimental model development.
Prog Retin Eye Res. 2019 Jul;71:88-113. doi: 10.1016/j.preteyeres.2018.11.005. Epub 2018 Nov 16.
6
A new scale for the assessment of conjunctival bulbar redness.
Ocul Surf. 2018 Oct;16(4):436-440. doi: 10.1016/j.jtos.2018.06.003. Epub 2018 Jun 6.
7
Reduced Efficacy of Low-dose Topical Steroids in Dry Eye Disease Associated With Graft-versus-Host Disease.
Am J Ophthalmol. 2018 Jun;190:17-23. doi: 10.1016/j.ajo.2018.03.024. Epub 2018 Mar 20.
8
Ocular surface evaluation in eyes with chronic glaucoma on long term topical antiglaucoma therapy.
Int J Ophthalmol. 2017 Jun 18;10(6):931-938. doi: 10.18240/ijo.2017.06.16. eCollection 2017.
9
Clinical impact of inflammation in dry eye disease: proceedings of the ODISSEY group meeting.
Acta Ophthalmol. 2018 Mar;96(2):111-119. doi: 10.1111/aos.13436. Epub 2017 Apr 8.
10
Translational Immunoimaging and Neuroimaging Demonstrate Corneal Neuroimmune Crosstalk.
Cornea. 2016 Nov;35 Suppl 1(Suppl 1):S20-S24. doi: 10.1097/ICO.0000000000001014.

本文引用的文献

1
What is the value of incorporating tear osmolarity measurement in assessing patient response to therapy in dry eye disease?
Am J Ophthalmol. 2014 Jan;157(1):69-77.e2. doi: 10.1016/j.ajo.2013.07.019. Epub 2013 Sep 21.
2
Tear film mucins: front line defenders of the ocular surface; comparison with airway and gastrointestinal tract mucins.
Exp Eye Res. 2013 Dec;117:62-78. doi: 10.1016/j.exer.2013.07.027. Epub 2013 Aug 14.
3
Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography.
Invest Ophthalmol Vis Sci. 2013 Aug 15;54(8):5578-83. doi: 10.1167/iovs.13-11920.
4
Corneal nerve structure and function in patients with non-sjogren dry eye: clinical correlations.
Invest Ophthalmol Vis Sci. 2013 Aug 1;54(8):5144-50. doi: 10.1167/iovs.13-12370.
5
In Vivo 3D Meibography of the Human Eyelid Using Real Time Imaging Fourier-Domain OCT.
PLoS One. 2013 Jun 21;8(6):e67143. doi: 10.1371/journal.pone.0067143. Print 2013.
6
HLA-DR expression as a biomarker of inflammation for multicenter clinical trials of ocular surface disease.
Exp Eye Res. 2013 Jun;111:95-104. doi: 10.1016/j.exer.2013.03.018. Epub 2013 Apr 6.
7
Optical coherence tomography for measuring the tear film meniscus: correlation with schirmer test and tear-film breakup time.
Curr Eye Res. 2013 Jul;38(7):736-42. doi: 10.3109/02713683.2013.774422. Epub 2013 Mar 14.
8
Detection of meibomian glands and classification of meibography images.
J Biomed Opt. 2012 Aug;17(8):086008. doi: 10.1117/1.JBO.17.8.086008.
9
Practical applications of anterior segment optical coherence tomography imaging following corneal surgery.
Semin Ophthalmol. 2012 Sep-Nov;27(5-6):125-32. doi: 10.3109/08820538.2012.707274.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验