Suppr超能文献

鉴定 Wee1 为突变 RAS 驱动的急性白血病和其他恶性肿瘤的新型治疗靶点。

Identification of Wee1 as a novel therapeutic target for mutant RAS-driven acute leukemia and other malignancies.

机构信息

Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.

High Magnetic Field laboratory, Chinese Academy of Sciences, Hefei, Anhui, P. R. China.

出版信息

Leukemia. 2015 Jan;29(1):27-37. doi: 10.1038/leu.2014.149. Epub 2014 May 5.

Abstract

Direct targeting of rat sarcoma (RAS), which is frequently mutated, has proven to be challenging, and inhibition of individual downstream RAS mediators has resulted in limited clinical efficacy. We designed a chemical screen to identify compounds capable of potentiating mammalian target of rapamycin (mTOR) inhibition in mutant RAS-positive leukemia, and identified a Wee1 inhibitor. Synergy was observed in both mutant neuroblastoma RAS viral oncogene homolog (NRAS)- and mutant kirsten RAS viral oncogene homolog (KRAS)-positive acute myelogenous leukemia (AML) cell lines and primary patient samples. The observed synergy enhanced dephosphorylation of AKT, 4E-binding protein 1 and s6 kinase, and correlated with increased apoptosis. The specificity of Wee1 as the target of MK-1775 was validated by Wee1 knockdown, as well as partial reversal of drug combination-induced apoptosis by a cyclin-dependent kinase 1 (CDK1) inhibitor. Importantly, we also extended our findings to other mutant RAS-expressing malignancies, including mutant NRAS-positive melanoma, and mutant KRAS-positive colorectal cancer, pancreatic cancer and lung cancer. We observed favorable responses with combined Wee1/mTOR inhibition in human cancer cell lines from multiple malignancies, and inhibition of tumor growth in in vivo models of mutant KRAS lung cancer and leukemia. The present study introduces for the first time Wee1 inhibition combined with mTOR inhibition as a novel therapeutic strategy for the selective treatment of mutant RAS-positive leukemia and other mutant RAS-expressing malignancies.

摘要

直接靶向经常发生突变的大鼠肉瘤(RAS)已被证明具有挑战性,而抑制单个下游 RAS 介质的作用导致临床疗效有限。我们设计了一个化学筛选实验,以鉴定能够增强哺乳动物雷帕霉素靶蛋白(mTOR)在突变 RAS 阳性白血病中的抑制作用的化合物,并鉴定出一种 Wee1 抑制剂。在突变型神经母细胞瘤 RAS 病毒癌基因同源物(NRAS)和突变型 Kirsten RAS 病毒癌基因同源物(KRAS)阳性急性髓细胞性白血病(AML)细胞系和原代患者样本中观察到协同作用。观察到的协同作用增强了 AKT、4E 结合蛋白 1 和 s6 激酶的去磷酸化作用,并与细胞凋亡增加相关。Wee1 作为 MK-1775 靶点的特异性通过 Wee1 敲低得到验证,同时通过细胞周期蛋白依赖性激酶 1(CDK1)抑制剂部分逆转药物组合诱导的细胞凋亡。重要的是,我们还将我们的发现扩展到其他表达突变 RAS 的恶性肿瘤,包括突变型 NRAS 阳性黑色素瘤和突变型 KRAS 阳性结直肠癌、胰腺癌和肺癌。我们在来自多种恶性肿瘤的人类癌细胞系中观察到联合使用 Wee1/mTOR 抑制的有利反应,并在突变型 KRAS 肺癌和白血病的体内模型中观察到抑制肿瘤生长。本研究首次提出了 Wee1 抑制联合 mTOR 抑制作为治疗突变型 RAS 阳性白血病和其他表达突变型 RAS 的恶性肿瘤的新治疗策略。

相似文献

1
2
CHK1 and WEE1 inhibition combine synergistically to enhance therapeutic efficacy in acute myeloid leukemia ex vivo.
Haematologica. 2014 Apr;99(4):688-96. doi: 10.3324/haematol.2013.093187. Epub 2013 Oct 31.
3
Inhibition of Wee1, AKT, and CDK4 underlies the efficacy of the HSP90 inhibitor XL888 in an in vivo model of NRAS-mutant melanoma.
Mol Cancer Ther. 2013 Jun;12(6):901-12. doi: 10.1158/1535-7163.MCT-12-1003. Epub 2013 Mar 28.
4
Synergistic anti-leukemic interactions between panobinostat and MK-1775 in acute myeloid leukemia ex vivo.
Cancer Biol Ther. 2015;16(12):1784-93. doi: 10.1080/15384047.2015.1095406.
5
Wee1 inhibitor MK1775 sensitizes KRAS mutated NSCLC cells to sorafenib.
Sci Rep. 2018 Jan 17;8(1):948. doi: 10.1038/s41598-017-18900-y.
6
Inhibition of Wee1 sensitizes cancer cells to antimetabolite chemotherapeutics in vitro and in vivo, independent of p53 functionality.
Mol Cancer Ther. 2013 Dec;12(12):2675-84. doi: 10.1158/1535-7163.MCT-13-0424. Epub 2013 Oct 11.
7
Chk1 inhibition and Wee1 inhibition combine synergistically to impede cellular proliferation.
Cancer Biol Ther. 2011 Nov 1;12(9):788-96. doi: 10.4161/cbt.12.9.17673.
8
Synergy of WEE1 and mTOR Inhibition in Mutant -Driven Lung Cancers.
Clin Cancer Res. 2017 Nov 15;23(22):6993-7005. doi: 10.1158/1078-0432.CCR-17-1098. Epub 2017 Aug 18.
10
Upregulation of IGF1R by mutant RAS in leukemia and potentiation of RAS signaling inhibitors by small-molecule inhibition of IGF1R.
Clin Cancer Res. 2014 Nov 1;20(21):5483-95. doi: 10.1158/1078-0432.CCR-14-0902. Epub 2014 Sep 3.

引用本文的文献

2
Integrated bioinformatics analysis to develop diagnostic models for malignant transformation of chronic proliferative diseases.
Blood Sci. 2025 Apr 7;7(2):e00226. doi: 10.1097/BS9.0000000000000226. eCollection 2025 Jun.
4
AZD1775 synergizes with SLC7A11 inhibition to promote ferroptosis.
Sci China Life Sci. 2025 Jan;68(1):204-218. doi: 10.1007/s11427-023-2589-1. Epub 2024 Sep 6.
6
Applications of Modified Mesenchymal Stem Cells as Targeted Systems against Tumor Cells.
Int J Mol Sci. 2024 Jul 16;25(14):7791. doi: 10.3390/ijms25147791.
7
An update of predictive biomarkers related to WEE1 inhibition in cancer therapy.
J Cancer Res Clin Oncol. 2024 Jan 17;150(1):13. doi: 10.1007/s00432-023-05527-y.
8
Causal linkage of presence of mutant NPM1 to efficacy of novel therapeutic agents against AML cells with mutant NPM1.
Leukemia. 2023 Jun;37(6):1336-1348. doi: 10.1038/s41375-023-01882-4. Epub 2023 Mar 28.
10
A WEE1 family business: regulation of mitosis, cancer progression, and therapeutic target.
J Hematol Oncol. 2020 Sep 21;13(1):126. doi: 10.1186/s13045-020-00959-2.

本文引用的文献

1
Therapeutic targeting of oncogenic K-Ras by a covalent catalytic site inhibitor.
Angew Chem Int Ed Engl. 2014 Jan 3;53(1):199-204. doi: 10.1002/anie.201307387. Epub 2013 Nov 20.
2
K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions.
Nature. 2013 Nov 28;503(7477):548-51. doi: 10.1038/nature12796. Epub 2013 Nov 20.
3
Preclinical evaluation of the WEE1 inhibitor MK-1775 as single-agent anticancer therapy.
Mol Cancer Ther. 2013 Aug;12(8):1442-52. doi: 10.1158/1535-7163.MCT-13-0025. Epub 2013 May 22.
4
5
Characterization of Torin2, an ATP-competitive inhibitor of mTOR, ATM, and ATR.
Cancer Res. 2013 Apr 15;73(8):2574-86. doi: 10.1158/0008-5472.CAN-12-1702. Epub 2013 Feb 22.
6
Targeting the Akt kinase to modulate survival, invasiveness and drug resistance of cancer cells.
Curr Med Chem. 2013;20(15):1923-45. doi: 10.2174/09298673113209990106.
7
Prognostic and predictive roles of KRAS mutation in colorectal cancer.
Int J Mol Sci. 2012 Sep 25;13(10):12153-68. doi: 10.3390/ijms131012153.
8
Combination therapy targeting the Chk1 and Wee1 kinases shows therapeutic efficacy in neuroblastoma.
Cancer Res. 2013 Jan 15;73(2):776-84. doi: 10.1158/0008-5472.CAN-12-2669. Epub 2012 Nov 7.
10
Targeting oncogenic Ras signaling in hematologic malignancies.
Blood. 2012 Oct 25;120(17):3397-406. doi: 10.1182/blood-2012-05-378596. Epub 2012 Aug 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验