PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94305, USA.
LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
Nature. 2014 May 15;509(7500):345-8. doi: 10.1038/nature13252. Epub 2014 May 7.
Crucial to many light-driven processes in transition metal complexes is the absorption and dissipation of energy by 3d electrons. But a detailed understanding of such non-equilibrium excited-state dynamics and their interplay with structural changes is challenging: a multitude of excited states and possible transitions result in phenomena too complex to unravel when faced with the indirect sensitivity of optical spectroscopy to spin dynamics and the flux limitations of ultrafast X-ray sources. Such a situation exists for archetypal polypyridyl iron complexes, such as Fe(2,2'-bipyridine)3, where the excited-state charge and spin dynamics involved in the transition from a low- to a high-spin state (spin crossover) have long been a source of interest and controversy. Here we demonstrate that femtosecond resolution X-ray fluorescence spectroscopy, with its sensitivity to spin state, can elucidate the spin crossover dynamics of Fe(2,2'-bipyridine)3 on photoinduced metal-to-ligand charge transfer excitation. We are able to track the charge and spin dynamics, and establish the critical role of intermediate spin states in the crossover mechanism. We anticipate that these capabilities will make our method a valuable tool for mapping in unprecedented detail the fundamental electronic excited-state dynamics that underpin many useful light-triggered molecular phenomena involving 3d transition metal complexes.
对于过渡金属配合物中的许多光驱动过程而言,3d 电子的能量吸收和耗散至关重要。但是,详细了解这种非平衡激发态动力学及其与结构变化的相互作用具有挑战性:大量的激发态和可能的跃迁导致了在面对光学光谱对自旋动力学的间接灵敏度和超快 X 射线源通量限制时过于复杂而无法解决的现象。这种情况存在于典型的多吡啶铁配合物中,例如 Fe(2,2'-bipyridine)3,其中涉及从低自旋态到高自旋态(自旋交叉)的激发态电荷和自旋动力学一直是人们关注和争议的来源。在这里,我们证明飞秒分辨率 X 射线荧光光谱法对自旋态的灵敏度可以阐明 Fe(2,2'-bipyridine)3 在光诱导的金属-配体电荷转移激发下的自旋交叉动力学。我们能够跟踪电荷和自旋动力学,并确定中间自旋态在交叉机制中的关键作用。我们预计这些功能将使我们的方法成为一种有价值的工具,可以以前所未有的细节绘制基本的电子激发态动力学图谱,这些动力学图谱是许多涉及 3d 过渡金属配合物的有用光触发分子现象的基础。