Suppr超能文献

经典和非经典 Wnt 依赖性途径的串扰调节人血脑屏障细胞中 P-糖蛋白的表达。

The cross-talk between canonical and non-canonical Wnt-dependent pathways regulates P-glycoprotein expression in human blood-brain barrier cells.

机构信息

1] Department of Oncology, School of Medicine, University of Turin, Turin, Italy [2] Unidad de Bioquímica, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia.

Department of Oncology, School of Medicine, University of Turin, Turin, Italy.

出版信息

J Cereb Blood Flow Metab. 2014 Aug;34(8):1258-69. doi: 10.1038/jcbfm.2014.100. Epub 2014 Jun 4.

Abstract

In this work, we investigate if and how transducers of the 'canonical' Wnt pathway, i.e., Wnt/glycogen synthase kinase 3 (GSK3)/β-catenin, and transducers of the 'non-canonical' Wnt pathway, i.e., Wnt/RhoA/RhoA kinase (RhoAK), cooperate to control the expression of P-glycoprotein (Pgp) in blood-brain barrier (BBB) cells. By analyzing human primary brain microvascular endothelial cells constitutively activated for RhoA, silenced for RhoA or treated with the RhoAK inhibitor Y27632, we found that RhoAK phosphorylated and activated the protein tyrosine phosphatase 1B (PTP1B), which dephosphorylated tyrosine 216 of GSK3, decreasing the GSK3-mediated inhibition of β-catenin. By contrast, the inhibition of RhoA/RhoAK axis prevented the activation of PTP1B, enhanced the GSK3-induced phosphorylation and ubiquitination of β-catenin, and reduced the β-catenin-driven transcription of Pgp. The RhoAK inhibition increased the delivery of Pgp substrates like doxorubicin across the BBB and improved the doxorubicin efficacy against glioblastoma cells co-cultured under a BBB monolayer. Our data demonstrate that in human BBB cells the expression of Pgp is controlled by a cross-talk between canonical and non-canonical Wnt pathways. The disruption of this cross-talk, e.g., by inhibiting RhoAK, downregulates Pgp and increases the delivery of Pgp substrates across the BBB.

摘要

在这项工作中,我们研究了“经典” Wnt 途径的转导子,即 Wnt/糖原合酶激酶 3(GSK3)/β-连环蛋白,和“非经典” Wnt 途径的转导子,即 Wnt/RhoA/RhoA 激酶(RhoAK),是否以及如何合作控制血脑屏障(BBB)细胞中 P-糖蛋白(Pgp)的表达。通过分析 RhoA 持续激活的人原代脑微血管内皮细胞、RhoA 沉默的细胞或用 RhoAK 抑制剂 Y27632 处理的细胞,我们发现 RhoAK 磷酸化并激活了蛋白酪氨酸磷酸酶 1B(PTP1B),从而使 GSK3 的酪氨酸 216 去磷酸化,减少 GSK3 介导的β-连环蛋白抑制。相比之下,抑制 RhoA/RhoAK 轴阻止了 PTP1B 的激活,增强了 GSK3 诱导的β-连环蛋白磷酸化和泛素化,并减少了β-连环蛋白驱动的 Pgp 转录。RhoAK 抑制增加了 Pgp 底物如多柔比星穿过 BBB 的递送,并提高了多柔比星对共培养在 BBB 单层下的神经胶质瘤细胞的疗效。我们的数据表明,在人 BBB 细胞中,Pgp 的表达受经典和非经典 Wnt 途径之间的串扰控制。这种串扰的破坏,例如通过抑制 RhoAK,下调 Pgp 并增加 Pgp 底物穿过 BBB 的递送。

相似文献

2
Frizzled fissure to improve central nervous system drug delivery?
J Cereb Blood Flow Metab. 2014 Aug;34(8):1257. doi: 10.1038/jcbfm.2014.98. Epub 2014 Jun 4.
3
Wnt3A Induces GSK-3β Phosphorylation and β-Catenin Accumulation Through RhoA/ROCK.
J Cell Physiol. 2017 May;232(5):1104-1113. doi: 10.1002/jcp.25572. Epub 2016 Nov 20.
5
Temozolomide down-regulates P-glycoprotein in human blood-brain barrier cells by disrupting Wnt3 signaling.
Cell Mol Life Sci. 2014 Feb;71(3):499-516. doi: 10.1007/s00018-013-1397-y. Epub 2013 Jun 15.
6
β-Catenin Is Required for Endothelial Cyp1b1 Regulation Influencing Metabolic Barrier Function.
J Neurosci. 2016 Aug 24;36(34):8921-35. doi: 10.1523/JNEUROSCI.0148-16.2016.
7
Activation of beta-catenin signalling by GSK-3 inhibition increases p-glycoprotein expression in brain endothelial cells.
J Neurochem. 2008 Aug;106(4):1855-65. doi: 10.1111/j.1471-4159.2008.05537.x. Epub 2008 Jul 4.
9
RhoA-mediated signaling in Notch-induced senescence-like growth arrest and endothelial barrier dysfunction.
Arterioscler Thromb Vasc Biol. 2011 Apr;31(4):876-82. doi: 10.1161/ATVBAHA.110.221945. Epub 2011 Jan 27.

引用本文的文献

1
Blood-brain barrier permeability increases with the differentiation of glioblastoma cells in vitro.
Fluids Barriers CNS. 2024 Nov 1;21(1):89. doi: 10.1186/s12987-024-00590-0.
2
Suppressing Wnt signaling of the blood‒tumor barrier to intensify drug delivery and inhibit lipogenesis of brain metastases.
Acta Pharm Sin B. 2024 Jun;14(6):2716-2731. doi: 10.1016/j.apsb.2024.03.024. Epub 2024 Mar 21.
3
ROCK1 deficiency preserves caveolar compartmentalization of signaling molecules and cell membrane integrity.
FASEB Bioadv. 2024 Feb 23;6(3):85-102. doi: 10.1096/fba.2024-00015. eCollection 2024 Mar.
5
The Molecular Basis of Wnt/-Catenin Signaling Pathways in Neurodegenerative Diseases.
Int J Cell Biol. 2023 Sep 21;2023:9296092. doi: 10.1155/2023/9296092. eCollection 2023.
6
β-catenin inhibitors in cancer therapeutics: intricacies and way forward.
Bioengineered. 2023 Dec;14(1):2251696. doi: 10.1080/21655979.2023.2251696.
7
A DLG1-ARHGAP31-CDC42 axis is essential for the intestinal stem cell response to fluctuating niche Wnt signaling.
Cell Stem Cell. 2023 Feb 2;30(2):188-206.e6. doi: 10.1016/j.stem.2022.12.008. Epub 2023 Jan 13.
8
Wnt5A Signaling Regulates Gut Bacterial Survival and T Cell Homeostasis.
mSphere. 2022 Dec 21;7(6):e0050722. doi: 10.1128/msphere.00507-22. Epub 2022 Dec 6.
10
FSAP aggravated endothelial dysfunction and neurological deficits in acute ischemic stroke due to large vessel occlusion.
Signal Transduct Target Ther. 2022 Jan 7;7(1):6. doi: 10.1038/s41392-021-00802-1.

本文引用的文献

2
Rho-kinase inhibition improves ischemic perfusion deficit in hyperlipidemic mice.
J Cereb Blood Flow Metab. 2014 Feb;34(2):284-7. doi: 10.1038/jcbfm.2013.195. Epub 2013 Nov 6.
6
Temozolomide down-regulates P-glycoprotein in human blood-brain barrier cells by disrupting Wnt3 signaling.
Cell Mol Life Sci. 2014 Feb;71(3):499-516. doi: 10.1007/s00018-013-1397-y. Epub 2013 Jun 15.
8
PI3K/Akt-dependent phosphorylation of GSK3β and activation of RhoA regulate Wnt5a-induced gastric cancer cell migration.
Cell Signal. 2013 Feb;25(2):447-56. doi: 10.1016/j.cellsig.2012.10.012. Epub 2012 Oct 31.
9
Wnt/β-catenin pathway regulates ABCB1 transcription in chronic myeloid leukemia.
BMC Cancer. 2012 Jul 23;12:303. doi: 10.1186/1471-2407-12-303.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验