Suppr超能文献

一种用于在人类多能干细胞中进行快速、多重且可诱导的基因组编辑的iCRISPR平台。

An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells.

作者信息

González Federico, Zhu Zengrong, Shi Zhong-Dong, Lelli Katherine, Verma Nipun, Li Qing V, Huangfu Danwei

机构信息

Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, New York 10065, USA.

Weill Graduate School of Medical Sciences at Cornell University/The Rockefeller University/Sloan-Kettering Institute Tri-Institutional M.D.-Ph.D. Program, 1300 York Avenue, New York, NY 10065, USA.

出版信息

Cell Stem Cell. 2014 Aug 7;15(2):215-226. doi: 10.1016/j.stem.2014.05.018. Epub 2014 Jun 12.

Abstract

Human pluripotent stem cells (hPSCs) offer a unique platform for elucidating the genes and molecular pathways that underlie complex traits and diseases. To realize this promise, methods for rapid and controllable genetic manipulations are urgently needed. By combining two newly developed gene-editing tools, the TALEN and CRISPR/Cas systems, we have developed a genome-engineering platform in hPSCs, which we named iCRISPR. iCRISPR enabled rapid and highly efficient generation of biallelic knockout hPSCs for loss-of-function studies, as well as homozygous knockin hPSCs with specific nucleotide alterations for precise modeling of disease conditions. We further demonstrate efficient one-step generation of double- and triple-gene knockout hPSC lines, as well as stage-specific inducible gene knockout during hPSC differentiation. Thus the iCRISPR platform is uniquely suited for dissection of complex genetic interactions and pleiotropic gene functions in human disease studies and has the potential to support high-throughput genetic analysis in hPSCs.

摘要

人类多能干细胞(hPSC)为阐明构成复杂性状和疾病基础的基因及分子途径提供了一个独特的平台。为实现这一前景,迫切需要快速且可控的基因操作方法。通过结合两种新开发的基因编辑工具——转录激活样效应因子核酸酶(TALEN)和规律成簇间隔短回文重复序列/CRISPR相关蛋白(CRISPR/Cas)系统,我们在hPSC中开发了一个基因组工程平台,我们将其命名为iCRISPR。iCRISPR能够快速且高效地生成用于功能丧失研究的双等位基因敲除hPSC,以及具有特定核苷酸改变的纯合敲入hPSC,用于疾病状况的精确建模。我们进一步证明了能高效一步生成双基因和三基因敲除hPSC系,以及在hPSC分化过程中进行阶段特异性诱导基因敲除。因此,iCRISPR平台特别适合在人类疾病研究中剖析复杂的遗传相互作用和多效基因功能,并且有潜力支持hPSC中的高通量遗传分析。

相似文献

1
An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells.
Cell Stem Cell. 2014 Aug 7;15(2):215-226. doi: 10.1016/j.stem.2014.05.018. Epub 2014 Jun 12.
2
The iCRISPR platform for rapid genome editing in human pluripotent stem cells.
Methods Enzymol. 2014;546:215-50. doi: 10.1016/B978-0-12-801185-0.00011-8.
4
Engineering Human Stem Cell Lines with Inducible Gene Knockout using CRISPR/Cas9.
Cell Stem Cell. 2015 Aug 6;17(2):233-44. doi: 10.1016/j.stem.2015.06.001. Epub 2015 Jul 2.
5
TALEN- and CRISPR/Cas9-Mediated Gene Editing in Human Pluripotent Stem Cells Using Lipid-Based Transfection.
Curr Protoc Stem Cell Biol. 2015 Aug 3;34:5B.3.1-5B.3.25. doi: 10.1002/9780470151808.sc05b03s34.
8
Genome Editing in Human Pluripotent Stem Cells: Approaches, Pitfalls, and Solutions.
Cell Stem Cell. 2016 Jan 7;18(1):53-65. doi: 10.1016/j.stem.2015.12.002.
9
A cut above the rest: targeted genome editing technologies in human pluripotent stem cells.
J Biol Chem. 2014 Feb 21;289(8):4594-9. doi: 10.1074/jbc.R113.488247. Epub 2013 Dec 20.

引用本文的文献

3
Extended NGN2 Expression in iPSCs Dramatically Enhances Purity of Neuronal Cultures.
bioRxiv. 2025 Jun 21:2025.06.20.660764. doi: 10.1101/2025.06.20.660764.
4
Novel drug-inducible CRISPRa/i systems for rapid and reversible manipulation of gene transcription.
Cell Mol Life Sci. 2025 Jun 23;82(1):249. doi: 10.1007/s00018-025-05786-7.
7
Harnessing CRISPR potential for intervertebral disc regeneration strategies.
Front Bioeng Biotechnol. 2025 May 8;13:1562412. doi: 10.3389/fbioe.2025.1562412. eCollection 2025.

本文引用的文献

1
Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases.
Genome Res. 2014 Jan;24(1):132-41. doi: 10.1101/gr.162339.113. Epub 2013 Nov 19.
2
Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease.
Nat Genet. 2013 Dec;45(12):1452-8. doi: 10.1038/ng.2802. Epub 2013 Oct 27.
3
Genome engineering using the CRISPR-Cas9 system.
Nat Protoc. 2013 Nov;8(11):2281-2308. doi: 10.1038/nprot.2013.143. Epub 2013 Oct 24.
4
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity.
Cell. 2013 Sep 12;154(6):1380-9. doi: 10.1016/j.cell.2013.08.021. Epub 2013 Aug 29.
5
High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity.
Nat Biotechnol. 2013 Sep;31(9):839-43. doi: 10.1038/nbt.2673. Epub 2013 Aug 11.
7
DNA targeting specificity of RNA-guided Cas9 nucleases.
Nat Biotechnol. 2013 Sep;31(9):827-32. doi: 10.1038/nbt.2647. Epub 2013 Jul 21.
8
CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes.
Cell. 2013 Jul 18;154(2):442-51. doi: 10.1016/j.cell.2013.06.044. Epub 2013 Jul 11.
9
High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells.
Nat Biotechnol. 2013 Sep;31(9):822-6. doi: 10.1038/nbt.2623. Epub 2013 Jun 23.
10
Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease.
Genetics. 2013 Aug;194(4):1029-35. doi: 10.1534/genetics.113.152710. Epub 2013 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验