Suppr超能文献

利用CRISPR/Cas9构建具有诱导性基因敲除功能的人干细胞系

Engineering Human Stem Cell Lines with Inducible Gene Knockout using CRISPR/Cas9.

作者信息

Chen Yuejun, Cao Jingyuan, Xiong Man, Petersen Andrew J, Dong Yi, Tao Yunlong, Huang Cindy Tzu-Ling, Du Zhongwei, Zhang Su-Chun

机构信息

Waisman Center, University of Wisconsin, Madison, WI 53705, USA.

Waisman Center, University of Wisconsin, Madison, WI 53705, USA.

出版信息

Cell Stem Cell. 2015 Aug 6;17(2):233-44. doi: 10.1016/j.stem.2015.06.001. Epub 2015 Jul 2.

Abstract

Precise temporal control of gene expression or deletion is critical for elucidating gene function in biological systems. However, the establishment of human pluripotent stem cell (hPSC) lines with inducible gene knockout (iKO) remains challenging. We explored building iKO hPSC lines by combining CRISPR/Cas9-mediated genome editing with the Flp/FRT and Cre/LoxP system. We found that "dual-sgRNA targeting" is essential for biallelic knockin of FRT sequences to flank the exon. We further developed a strategy to simultaneously insert an activity-controllable recombinase-expressing cassette and remove the drug-resistance gene, thus speeding up the generation of iKO hPSC lines. This two-step strategy was used to establish human embryonic stem cell (hESC) and induced pluripotent stem cell (iPSC) lines with iKO of SOX2, PAX6, OTX2, and AGO2, genes that exhibit diverse structural layout and temporal expression patterns. The availability of iKO hPSC lines will substantially transform the way we examine gene function in human cells.

摘要

基因表达或缺失的精确时空控制对于阐明生物系统中的基因功能至关重要。然而,建立具有诱导性基因敲除(iKO)的人类多能干细胞(hPSC)系仍然具有挑战性。我们探索了通过将CRISPR/Cas9介导的基因组编辑与Flp/FRT和Cre/LoxP系统相结合来构建iKO hPSC系。我们发现“双sgRNA靶向”对于将FRT序列双等位基因敲入外显子侧翼至关重要。我们进一步开发了一种策略,可同时插入一个活性可控的重组酶表达盒并去除耐药基因,从而加速iKO hPSC系的生成。这一两步策略被用于建立具有SOX2、PAX6、OTX2和AGO2基因iKO的人类胚胎干细胞(hESC)和诱导多能干细胞(iPSC)系,这些基因表现出不同的结构布局和时空表达模式。iKO hPSC系的可用性将极大地改变我们在人类细胞中研究基因功能的方式。

相似文献

1
Engineering Human Stem Cell Lines with Inducible Gene Knockout using CRISPR/Cas9.
Cell Stem Cell. 2015 Aug 6;17(2):233-44. doi: 10.1016/j.stem.2015.06.001. Epub 2015 Jul 2.
2
The iCRISPR platform for rapid genome editing in human pluripotent stem cells.
Methods Enzymol. 2014;546:215-50. doi: 10.1016/B978-0-12-801185-0.00011-8.
3
Efficient ssODN-Mediated Targeting by Avoiding Cellular Inhibitory RNAs through Precomplexed CRISPR-Cas9/sgRNA Ribonucleoprotein.
Stem Cell Reports. 2021 Apr 13;16(4):985-996. doi: 10.1016/j.stemcr.2021.02.013. Epub 2021 Mar 11.
4
Conditional Gene Knockout in Human Cells with Inducible CRISPR/Cas9.
Methods Mol Biol. 2019;1961:185-209. doi: 10.1007/978-1-4939-9170-9_12.
5
An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells.
Cell Stem Cell. 2014 Aug 7;15(2):215-226. doi: 10.1016/j.stem.2014.05.018. Epub 2014 Jun 12.
6
Comprehensive Protocols for CRISPR/Cas9-based Gene Editing in Human Pluripotent Stem Cells.
Curr Protoc Stem Cell Biol. 2016 Aug 17;38:5B.6.1-5B.6.60. doi: 10.1002/cpsc.15.
7
Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus.
Cell Rep. 2015 May 12;11(6):875-883. doi: 10.1016/j.celrep.2015.04.007. Epub 2015 Apr 30.
9
p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells.
Nat Med. 2018 Jul;24(7):939-946. doi: 10.1038/s41591-018-0050-6. Epub 2018 Jun 11.

引用本文的文献

1
RAG recombinase expression discriminates the development of natural killer cells.
Front Immunol. 2025 Jul 25;16:1607664. doi: 10.3389/fimmu.2025.1607664. eCollection 2025.
3
Multiscale engineering of brain organoids for disease modeling.
Adv Drug Deliv Rev. 2024 Jul;210:115344. doi: 10.1016/j.addr.2024.115344. Epub 2024 May 27.
4
In vitro human cell culture models in a bench-to-bedside approach to epilepsy.
Epilepsia Open. 2024 Jun;9(3):865-890. doi: 10.1002/epi4.12941. Epub 2024 Apr 18.
5
Escaping from CRISPR-Cas-mediated knockout: the facts, mechanisms, and applications.
Cell Mol Biol Lett. 2024 Apr 8;29(1):48. doi: 10.1186/s11658-024-00565-x.
7
A patterned human neural tube model using microfluidic gradients.
Nature. 2024 Apr;628(8007):391-399. doi: 10.1038/s41586-024-07204-7. Epub 2024 Feb 26.
8
The H2Bub1-deposition complex is required for human and mouse cardiogenesis.
Development. 2023 Dec 1;150(23). doi: 10.1242/dev.201899.
9
Induction of local immunosuppression in allogeneic cell transplantation by cell-type-specific expression of PD-L1 and CTLA4Ig.
Stem Cell Reports. 2023 Dec 12;18(12):2344-2355. doi: 10.1016/j.stemcr.2023.10.016. Epub 2023 Nov 22.
10
Generation of locus coeruleus norepinephrine neurons from human pluripotent stem cells.
Nat Biotechnol. 2024 Sep;42(9):1404-1416. doi: 10.1038/s41587-023-01977-4. Epub 2023 Nov 16.

本文引用的文献

1
Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9.
Cell Stem Cell. 2014 Nov 6;15(5):643-52. doi: 10.1016/j.stem.2014.10.004.
4
An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells.
Cell Stem Cell. 2014 Aug 7;15(2):215-226. doi: 10.1016/j.stem.2014.05.018. Epub 2014 Jun 12.
5
Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons.
Cell Stem Cell. 2014 Jun 5;14(6):796-809. doi: 10.1016/j.stem.2014.02.004. Epub 2014 Apr 3.
7
Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases.
Genome Res. 2014 Jan;24(1):132-41. doi: 10.1101/gr.162339.113. Epub 2013 Nov 19.
8
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity.
Cell. 2013 Sep 12;154(6):1380-9. doi: 10.1016/j.cell.2013.08.021. Epub 2013 Aug 29.
10
DNA targeting specificity of RNA-guided Cas9 nucleases.
Nat Biotechnol. 2013 Sep;31(9):827-32. doi: 10.1038/nbt.2647. Epub 2013 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验