Suppr超能文献

人类多能干细胞中基于CRISPR/Cas9基因编辑的综合方案

Comprehensive Protocols for CRISPR/Cas9-based Gene Editing in Human Pluripotent Stem Cells.

作者信息

Santos David P, Kiskinis Evangelos, Eggan Kevin, Merkle Florian T

机构信息

The Ken & Ruth Davee Department of Neurology & Clinical Neurological Sciences, Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.

Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts.

出版信息

Curr Protoc Stem Cell Biol. 2016 Aug 17;38:5B.6.1-5B.6.60. doi: 10.1002/cpsc.15.

Abstract

Genome editing of human pluripotent stem cells (hPSCs) with the CRISPR/Cas9 system has the potential to revolutionize hPSC-based disease modeling, drug screening, and transplantation therapy. Here, we aim to provide a single resource to enable groups, even those with limited experience with hPSC culture or the CRISPR/Cas9 system, to successfully perform genome editing. The methods are presented in detail and are supported by a theoretical framework to allow for the incorporation of inevitable improvements in the rapidly evolving gene-editing field. We describe protocols to generate hPSC lines with gene-specific knock-outs, small targeted mutations, or knock-in reporters. © 2016 by John Wiley & Sons, Inc.

摘要

利用CRISPR/Cas9系统对人类多能干细胞(hPSC)进行基因组编辑,有可能彻底改变基于hPSC的疾病建模、药物筛选和移植治疗。在此,我们旨在提供一个单一资源,使各研究团队,即使是那些在hPSC培养或CRISPR/Cas9系统方面经验有限的团队,也能成功进行基因组编辑。文中详细介绍了相关方法,并辅以理论框架,以便纳入快速发展的基因编辑领域中不可避免的改进。我们描述了生成具有基因特异性敲除、小的靶向突变或敲入报告基因的hPSC系的方案。© 2016约翰威立国际出版公司

相似文献

1
Comprehensive Protocols for CRISPR/Cas9-based Gene Editing in Human Pluripotent Stem Cells.
Curr Protoc Stem Cell Biol. 2016 Aug 17;38:5B.6.1-5B.6.60. doi: 10.1002/cpsc.15.
2
CRISPR/Cas9-based Targeted Genome Editing for the Development of Monogenic Diseases Models with Human Pluripotent Stem Cells.
Curr Protoc Stem Cell Biol. 2018 May;45(1):e50. doi: 10.1002/cpsc.50. Epub 2018 Apr 26.
4
Protocol for scarless genome editing of human pluripotent stem cell based on orthogonal selective reporters.
STAR Protoc. 2024 Jun 21;5(2):103084. doi: 10.1016/j.xpro.2024.103084. Epub 2024 May 23.
5
The iCRISPR platform for rapid genome editing in human pluripotent stem cells.
Methods Enzymol. 2014;546:215-50. doi: 10.1016/B978-0-12-801185-0.00011-8.
7
Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/Cas9.
Methods. 2017 May 15;121-122:29-44. doi: 10.1016/j.ymeth.2017.05.009.
9
[Efficient genome editing in human pluripotent stem cells through CRISPR/Cas9].
Yi Chuan. 2015 Nov;37(11):1167-73. doi: 10.16288/j.yczz.15-240.
10
Semi-automated optimized method to isolate CRISPR/Cas9 edited human pluripotent stem cell clones.
Stem Cell Res Ther. 2023 Apr 27;14(1):110. doi: 10.1186/s13287-023-03327-2.

引用本文的文献

1
The ACBD3 protein coordinates ER-Golgi contacts to enable productive TBEV infection.
J Virol. 2025 May 20;99(5):e0222424. doi: 10.1128/jvi.02224-24. Epub 2025 Apr 10.
3
A Short Sequence Targets Transmembrane Proteins to Primary Cilia.
Cells. 2024 Jul 6;13(13):1156. doi: 10.3390/cells13131156.
5
The efficient generation of knockout microglia cells using a dual-sgRNA strategy by CRISPR/Cas9.
Front Mol Neurosci. 2022 Oct 13;15:1008827. doi: 10.3389/fnmol.2022.1008827. eCollection 2022.
7
Homozygous might be hemizygous: CRISPR/Cas9 editing in iPSCs results in detrimental on-target defects that escape standard quality controls.
Stem Cell Reports. 2022 Apr 12;17(4):993-1008. doi: 10.1016/j.stemcr.2022.02.008. Epub 2022 Mar 10.
8
Cardiac cell type-specific gene regulatory programs and disease risk association.
Sci Adv. 2021 May 14;7(20). doi: 10.1126/sciadv.abf1444. Print 2021 May.
9
Functional identity of hypothalamic melanocortin neurons depends on Tbx3.
Nat Metab. 2019 Feb;1(2):222-235. doi: 10.1038/s42255-018-0028-1. Epub 2019 Jan 28.
10
Pentameric Ligand-Gated Ion Channels as Pharmacological Targets Against Chronic Pain.
Front Pharmacol. 2020 Mar 3;11:167. doi: 10.3389/fphar.2020.00167. eCollection 2020.

本文引用的文献

1
Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9.
Nat Biotechnol. 2016 Feb;34(2):184-191. doi: 10.1038/nbt.3437. Epub 2016 Jan 18.
2
Genome Editing in Human Pluripotent Stem Cells: Approaches, Pitfalls, and Solutions.
Cell Stem Cell. 2016 Jan 7;18(1):53-65. doi: 10.1016/j.stem.2015.12.002.
3
High content analysis platform for optimization of lipid mediated CRISPR-Cas9 delivery strategies in human cells.
Acta Biomater. 2016 Apr 1;34:143-158. doi: 10.1016/j.actbio.2015.12.036. Epub 2015 Dec 30.
4
Efficient CRISPR/Cas9-Based Genome Engineering in Human Pluripotent Stem Cells.
Curr Protoc Hum Genet. 2016 Jan 1;88:21.4.1-21.4.23. doi: 10.1002/0471142905.hg2104s88.
5
Rationally engineered Cas9 nucleases with improved specificity.
Science. 2016 Jan 1;351(6268):84-8. doi: 10.1126/science.aad5227. Epub 2015 Dec 1.
6
Synthetic CRISPR RNA-Cas9-guided genome editing in human cells.
Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):E7110-7. doi: 10.1073/pnas.1520883112. Epub 2015 Nov 16.
7
Dynamics of CRISPR-Cas9 genome interrogation in living cells.
Science. 2015 Nov 13;350(6262):823-6. doi: 10.1126/science.aac6572.
9
Cloning-free CRISPR.
Stem Cell Reports. 2015 Nov 10;5(5):908-917. doi: 10.1016/j.stemcr.2015.09.022. Epub 2015 Oct 29.
10
Conformational control of DNA target cleavage by CRISPR-Cas9.
Nature. 2015 Nov 5;527(7576):110-3. doi: 10.1038/nature15544. Epub 2015 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验