Suppr超能文献

用于优化脂质介导的CRISPR-Cas9在人类细胞中递送策略的高内涵分析平台。

High content analysis platform for optimization of lipid mediated CRISPR-Cas9 delivery strategies in human cells.

作者信息

Steyer Benjamin, Carlson-Stevermer Jared, Angenent-Mari Nicolas, Khalil Andrew, Harkness Ty, Saha Krishanu

机构信息

Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.

Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

Acta Biomater. 2016 Apr 1;34:143-158. doi: 10.1016/j.actbio.2015.12.036. Epub 2015 Dec 30.

Abstract

UNLABELLED

Non-viral gene-editing of human cells using the CRISPR-Cas9 system requires optimized delivery of multiple components. Both the Cas9 endonuclease and a single guide RNA, that defines the genomic target, need to be present and co-localized within the nucleus for efficient gene-editing to occur. This work describes a new high-throughput screening platform for the optimization of CRISPR-Cas9 delivery strategies. By exploiting high content image analysis and microcontact printed plates, multi-parametric gene-editing outcome data from hundreds to thousands of isolated cell populations can be screened simultaneously. Employing this platform, we systematically screened four commercially available cationic lipid transfection materials with a range of RNAs encoding the CRISPR-Cas9 system. Analysis of Cas9 expression and editing of a fluorescent mCherry reporter transgene within human embryonic kidney cells was monitored over several days after transfection. Design of experiments analysis enabled rigorous evaluation of delivery materials and RNA concentration conditions. The results of this analysis indicated that the concentration and identity of transfection material have significantly greater effect on gene-editing than ratio or total amount of RNA. Cell subpopulation analysis on microcontact printed plates, further revealed that low cell number and high Cas9 expression, 24h after CRISPR-Cas9 delivery, were strong predictors of gene-editing outcomes. These results suggest design principles for the development of materials and transfection strategies with lipid-based materials. This platform could be applied to rapidly optimize materials for gene-editing in a variety of cell/tissue types in order to advance genomic medicine, regenerative biology and drug discovery.

STATEMENT OF SIGNIFICANCE

CRISPR-Cas9 is a new gene-editing technology for "genome surgery" that is anticipated to treat genetic diseases. This technology uses multiple components of the Cas9 system to cut out disease-causing mutations in the human genome and precisely suture in therapeutic sequences. Biomaterials based delivery strategies could help transition these technologies to the clinic. The design space for materials based delivery strategies is vast and optimization is essential to ensuring the safety and efficacy of these treatments. Therefore, new methods are required to rapidly and systematically screen gene-editing efficacy in human cells. This work utilizes an innovative platform to generate and screen many formulations of synthetic biomaterials and components of the CRISPR-Cas9 system in parallel. On this platform, we watch genome surgery in action using high content image analysis. These capabilities enabled us to identify formulation parameters for Cas9-material complexes that can optimize gene-editing in a specific human cell type.

摘要

未标记

使用CRISPR-Cas9系统对人类细胞进行非病毒基因编辑需要优化多种成分的递送。Cas9核酸内切酶和定义基因组靶点的单向导RNA都需要存在并在细胞核内共定位,才能发生有效的基因编辑。这项工作描述了一种用于优化CRISPR-Cas9递送策略的新型高通量筛选平台。通过利用高内涵图像分析和微接触印刷板,可以同时筛选来自数百到数千个分离细胞群体的多参数基因编辑结果数据。利用该平台,我们系统地筛选了四种市售阳离子脂质转染材料以及一系列编码CRISPR-Cas9系统的RNA。在转染后的几天内,监测人胚肾细胞中Cas9的表达以及荧光mCherry报告转基因的编辑情况。实验设计分析能够对递送材料和RNA浓度条件进行严格评估。该分析结果表明,转染材料的浓度和种类对基因编辑的影响远大于RNA的比例或总量。对微接触印刷板上的细胞亚群分析进一步表明,CRISPR-Cas9递送24小时后,低细胞数量和高Cas9表达是基因编辑结果的有力预测指标。这些结果为开发基于脂质材料的材料和转染策略提供了设计原则。该平台可应用于快速优化各种细胞/组织类型中基因编辑的材料,以推进基因组医学、再生生物学和药物发现。

意义声明

CRISPR-Cas9是一种用于“基因组手术”的新型基因编辑技术,有望治疗遗传疾病。该技术利用Cas9系统的多种成分切除人类基因组中的致病突变,并精确缝合治疗序列。基于生物材料的递送策略有助于将这些技术推向临床。基于材料的递送策略的设计空间广阔,优化对于确保这些治疗的安全性和有效性至关重要。因此,需要新的方法来快速、系统地筛选人类细胞中的基因编辑效果。这项工作利用一个创新平台并行生成和筛选合成生物材料和CRISPR-Cas9系统成分的许多配方。在这个平台上,我们使用高内涵图像分析观察基因组手术的过程。这些能力使我们能够确定Cas9-材料复合物的配方参数,从而在特定人类细胞类型中优化基因编辑。

相似文献

1
High content analysis platform for optimization of lipid mediated CRISPR-Cas9 delivery strategies in human cells.
Acta Biomater. 2016 Apr 1;34:143-158. doi: 10.1016/j.actbio.2015.12.036. Epub 2015 Dec 30.
3
4
Scaffold-mediated non-viral delivery platform for CRISPR/Cas9-based genome editing.
Acta Biomater. 2019 May;90:60-70. doi: 10.1016/j.actbio.2019.04.020. Epub 2019 Apr 9.
5
Non-Viral CRISPR/Cas Gene Editing In Vitro and In Vivo Enabled by Synthetic Nanoparticle Co-Delivery of Cas9 mRNA and sgRNA.
Angew Chem Int Ed Engl. 2017 Jan 19;56(4):1059-1063. doi: 10.1002/anie.201610209. Epub 2016 Dec 16.
7
Fast and Efficient CRISPR/Cas9 Genome Editing In Vivo Enabled by Bioreducible Lipid and Messenger RNA Nanoparticles.
Adv Mater. 2019 Aug;31(33):e1902575. doi: 10.1002/adma.201902575. Epub 2019 Jun 19.
8
Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/Cas9.
Methods. 2017 May 15;121-122:29-44. doi: 10.1016/j.ymeth.2017.05.009.
9
Development of ionizable lipid nanoparticles and a lyophilized formulation for potent CRISPR-Cas9 delivery and genome editing.
Int J Pharm. 2024 Mar 5;652:123845. doi: 10.1016/j.ijpharm.2024.123845. Epub 2024 Jan 22.
10
Postnatal Cardiac Gene Editing Using CRISPR/Cas9 With AAV9-Mediated Delivery of Short Guide RNAs Results in Mosaic Gene Disruption.
Circ Res. 2017 Oct 27;121(10):1168-1181. doi: 10.1161/CIRCRESAHA.116.310370. Epub 2017 Aug 29.

引用本文的文献

2
Poly(Beta-Amino Ester) Nanoparticles Enable Nonviral Delivery of CRISPR-Cas9 Plasmids for Gene Knockout and Gene Deletion.
Mol Ther Nucleic Acids. 2020 Jun 5;20:661-672. doi: 10.1016/j.omtn.2020.04.005. Epub 2020 Apr 21.
3
A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing.
Nat Nanotechnol. 2019 Oct;14(10):974-980. doi: 10.1038/s41565-019-0539-2. Epub 2019 Sep 9.
4
CRISPR/Cas9 Delivery Mediated with Hydroxyl-Rich Nanosystems for Gene Editing in Aorta.
Adv Sci (Weinh). 2019 Apr 20;6(12):1900386. doi: 10.1002/advs.201900386. eCollection 2019 Jun 19.
5
Versatile Redox-Responsive Polyplexes for the Delivery of Plasmid DNA, Messenger RNA, and CRISPR-Cas9 Genome-Editing Machinery.
ACS Appl Mater Interfaces. 2018 Sep 26;10(38):31915-31927. doi: 10.1021/acsami.8b09642. Epub 2018 Sep 17.
6
Developing precision medicine using scarless genome editing of human pluripotent stem cells.
Drug Discov Today Technol. 2018 Aug;28:3-12. doi: 10.1016/j.ddtec.2018.02.001. Epub 2018 Mar 8.
8
A Universal GSH-Responsive Nanoplatform for the Delivery of DNA, mRNA, and Cas9/sgRNA Ribonucleoprotein.
ACS Appl Mater Interfaces. 2018 Jun 6;10(22):18515-18523. doi: 10.1021/acsami.8b03496. Epub 2018 May 25.
9
Scarless Genome Editing of Human Pluripotent Stem Cells via Transient Puromycin Selection.
Stem Cell Reports. 2018 Feb 13;10(2):642-654. doi: 10.1016/j.stemcr.2017.12.004. Epub 2018 Jan 4.
10
Bioengineering Solutions for Manufacturing Challenges in CAR T Cells.
Biotechnol J. 2018 Feb;13(2). doi: 10.1002/biot.201700095. Epub 2017 Sep 18.

本文引用的文献

1
High-Content Analysis of CRISPR-Cas9 Gene-Edited Human Embryonic Stem Cells.
Stem Cell Reports. 2016 Jan 12;6(1):109-20. doi: 10.1016/j.stemcr.2015.11.014.
2
Screening of mRNA Chemical Modification to Maximize Protein Expression with Reduced Immunogenicity.
Pharmaceutics. 2015 Jul 23;7(3):137-51. doi: 10.3390/pharmaceutics7030137.
3
Challenges in CRISPR/CAS9 Delivery: Potential Roles of Nonviral Vectors.
Hum Gene Ther. 2015 Jul;26(7):452-62. doi: 10.1089/hum.2015.069.
4
CRISPR-Cas9: Prospects and Challenges.
Hum Gene Ther. 2015 Jul;26(7):409-10. doi: 10.1089/hum.2015.29002.fzh.
5
Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells.
Nat Biotechnol. 2015 Sep;33(9):985-989. doi: 10.1038/nbt.3290. Epub 2015 Jun 29.
6
Engineered CRISPR-Cas9 nucleases with altered PAM specificities.
Nature. 2015 Jul 23;523(7561):481-5. doi: 10.1038/nature14592. Epub 2015 Jun 22.
8
Photoactivatable CRISPR-Cas9 for optogenetic genome editing.
Nat Biotechnol. 2015 Jul;33(7):755-60. doi: 10.1038/nbt.3245. Epub 2015 Jun 15.
9
Delivery and Specificity of CRISPR-Cas9 Genome Editing Technologies for Human Gene Therapy.
Hum Gene Ther. 2015 Jul;26(7):443-51. doi: 10.1089/hum.2015.074.
10
Brave New Genome.
N Engl J Med. 2015 Jul 2;373(1):5-8. doi: 10.1056/NEJMp1506446. Epub 2015 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验