Steyer Benjamin, Carlson-Stevermer Jared, Angenent-Mari Nicolas, Khalil Andrew, Harkness Ty, Saha Krishanu
Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
Acta Biomater. 2016 Apr 1;34:143-158. doi: 10.1016/j.actbio.2015.12.036. Epub 2015 Dec 30.
Non-viral gene-editing of human cells using the CRISPR-Cas9 system requires optimized delivery of multiple components. Both the Cas9 endonuclease and a single guide RNA, that defines the genomic target, need to be present and co-localized within the nucleus for efficient gene-editing to occur. This work describes a new high-throughput screening platform for the optimization of CRISPR-Cas9 delivery strategies. By exploiting high content image analysis and microcontact printed plates, multi-parametric gene-editing outcome data from hundreds to thousands of isolated cell populations can be screened simultaneously. Employing this platform, we systematically screened four commercially available cationic lipid transfection materials with a range of RNAs encoding the CRISPR-Cas9 system. Analysis of Cas9 expression and editing of a fluorescent mCherry reporter transgene within human embryonic kidney cells was monitored over several days after transfection. Design of experiments analysis enabled rigorous evaluation of delivery materials and RNA concentration conditions. The results of this analysis indicated that the concentration and identity of transfection material have significantly greater effect on gene-editing than ratio or total amount of RNA. Cell subpopulation analysis on microcontact printed plates, further revealed that low cell number and high Cas9 expression, 24h after CRISPR-Cas9 delivery, were strong predictors of gene-editing outcomes. These results suggest design principles for the development of materials and transfection strategies with lipid-based materials. This platform could be applied to rapidly optimize materials for gene-editing in a variety of cell/tissue types in order to advance genomic medicine, regenerative biology and drug discovery.
CRISPR-Cas9 is a new gene-editing technology for "genome surgery" that is anticipated to treat genetic diseases. This technology uses multiple components of the Cas9 system to cut out disease-causing mutations in the human genome and precisely suture in therapeutic sequences. Biomaterials based delivery strategies could help transition these technologies to the clinic. The design space for materials based delivery strategies is vast and optimization is essential to ensuring the safety and efficacy of these treatments. Therefore, new methods are required to rapidly and systematically screen gene-editing efficacy in human cells. This work utilizes an innovative platform to generate and screen many formulations of synthetic biomaterials and components of the CRISPR-Cas9 system in parallel. On this platform, we watch genome surgery in action using high content image analysis. These capabilities enabled us to identify formulation parameters for Cas9-material complexes that can optimize gene-editing in a specific human cell type.
使用CRISPR-Cas9系统对人类细胞进行非病毒基因编辑需要优化多种成分的递送。Cas9核酸内切酶和定义基因组靶点的单向导RNA都需要存在并在细胞核内共定位,才能发生有效的基因编辑。这项工作描述了一种用于优化CRISPR-Cas9递送策略的新型高通量筛选平台。通过利用高内涵图像分析和微接触印刷板,可以同时筛选来自数百到数千个分离细胞群体的多参数基因编辑结果数据。利用该平台,我们系统地筛选了四种市售阳离子脂质转染材料以及一系列编码CRISPR-Cas9系统的RNA。在转染后的几天内,监测人胚肾细胞中Cas9的表达以及荧光mCherry报告转基因的编辑情况。实验设计分析能够对递送材料和RNA浓度条件进行严格评估。该分析结果表明,转染材料的浓度和种类对基因编辑的影响远大于RNA的比例或总量。对微接触印刷板上的细胞亚群分析进一步表明,CRISPR-Cas9递送24小时后,低细胞数量和高Cas9表达是基因编辑结果的有力预测指标。这些结果为开发基于脂质材料的材料和转染策略提供了设计原则。该平台可应用于快速优化各种细胞/组织类型中基因编辑的材料,以推进基因组医学、再生生物学和药物发现。
CRISPR-Cas9是一种用于“基因组手术”的新型基因编辑技术,有望治疗遗传疾病。该技术利用Cas9系统的多种成分切除人类基因组中的致病突变,并精确缝合治疗序列。基于生物材料的递送策略有助于将这些技术推向临床。基于材料的递送策略的设计空间广阔,优化对于确保这些治疗的安全性和有效性至关重要。因此,需要新的方法来快速、系统地筛选人类细胞中的基因编辑效果。这项工作利用一个创新平台并行生成和筛选合成生物材料和CRISPR-Cas9系统成分的许多配方。在这个平台上,我们使用高内涵图像分析观察基因组手术的过程。这些能力使我们能够确定Cas9-材料复合物的配方参数,从而在特定人类细胞类型中优化基因编辑。