Suppr超能文献

胞质外应激因子σE与其他大肠杆菌σ因子通过(p)ppGpp和DksA进行的协同调节,可能通过对单个全酶的特异性调节来实现。

Co-ordinated regulation of the extracytoplasmic stress factor, sigmaE, with other Escherichia coli sigma factors by (p)ppGpp and DksA may be achieved by specific regulation of individual holoenzymes.

作者信息

Gopalkrishnan Saumya, Nicoloff Herve, Ades Sarah E

机构信息

Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.

出版信息

Mol Microbiol. 2014 Aug;93(3):479-93. doi: 10.1111/mmi.12674. Epub 2014 Jul 10.

Abstract

The E. coli alternative sigma factor, σ(E) , transcribes genes required to maintain the cell envelope and is activated by conditions that destabilize the envelope. σ(E) is also activated during entry into stationary phase in the absence of envelope stress by the alarmone (p)ppGpp. (p)ppGpp controls a large regulatory network, reducing expression of σ(70) -dependent genes required for rapid growth and activating σ(70) -dependent and alternative sigma factor-dependent genes required for stress survival. The DksA protein often potentiates the effects of (p)ppGpp. Here we examine regulation of σ(E) by (p)ppGpp and DksA following starvation for nutrients. We find that (p)ppGpp is required for increased σ(E) activity under all conditions tested, but the requirement for DksA varies. DksA is required during amino acid starvation, but is dispensable during phosphate starvation. In contrast, regulation of σ(S) is (p)ppGpp- and DksA-dependent under all conditions tested, while negative regulation of σ(70) is DksA- but not (p)ppGpp-dependent during phosphate starvation, yet requires both factors during amino acid starvation. These findings suggest that the mechanism of transcriptional regulation by (p)ppGpp and/or DksA cannot yet be explained by a unifying model and is specific to individual promoters, individual holoenzymes, and specific starvation conditions.

摘要

大肠杆菌的替代西格玛因子σ(E)转录维持细胞包膜所需的基因,并在包膜不稳定的条件下被激活。在没有包膜应激的情况下,进入稳定期时,警报素(p)ppGpp也会激活σ(E)。(p)ppGpp控制着一个庞大的调控网络,降低快速生长所需的依赖σ(70)的基因的表达,并激活应激存活所需的依赖σ(70)和替代西格玛因子的基因。DksA蛋白通常会增强(p)ppGpp的作用。在这里,我们研究了营养物质饥饿后(p)ppGpp和DksA对σ(E)的调控。我们发现,在所有测试条件下,增加σ(E)活性都需要(p)ppGpp,但对DksA的需求各不相同。在氨基酸饥饿期间需要DksA,但在磷酸盐饥饿期间则不需要。相比之下,在所有测试条件下,σ(S)的调控都依赖于(p)ppGpp和DksA,而在磷酸盐饥饿期间,σ(70)的负调控依赖于DksA而不依赖于(p)ppGpp,但在氨基酸饥饿期间则需要这两种因子。这些发现表明,(p)ppGpp和/或DksA的转录调控机制尚不能用一个统一的模型来解释,并且特定于个别启动子、个别全酶和特定的饥饿条件。

相似文献

5
sigma54-promoter discrimination and regulation by ppGpp and DksA.
J Biol Chem. 2009 Jan 9;284(2):828-38. doi: 10.1074/jbc.M807707200. Epub 2008 Nov 13.
6
Universal functions of the σ finger in alternative σ factors during transcription initiation by bacterial RNA polymerase.
RNA Biol. 2021 Nov;18(11):2028-2037. doi: 10.1080/15476286.2021.1889254. Epub 2021 Feb 25.
8
DksA affects ppGpp induction of RpoS at a translational level.
J Bacteriol. 2002 Aug;184(16):4455-65. doi: 10.1128/JB.184.16.4455-4465.2002.
9
DksA and ppGpp directly regulate transcription of the Escherichia coli flagellar cascade.
Mol Microbiol. 2009 Dec;74(6):1368-79. doi: 10.1111/j.1365-2958.2009.06939.x. Epub 2009 Nov 2.
10
Transcriptional switching in Escherichia coli during stress and starvation by modulation of sigma activity.
FEMS Microbiol Rev. 2010 Sep;34(5):646-57. doi: 10.1111/j.1574-6976.2010.00223.x. Epub 2010 Apr 14.

引用本文的文献

1
NsrR Represses σ-Dependent Small RNAs and Interacts with RpoE via a Noncanonical Mechanism in .
Int J Mol Sci. 2025 Jun 30;26(13):6318. doi: 10.3390/ijms26136318.
2
Regulation of phosphate starvation-specific responses in .
Microbiology (Reading). 2023 Mar;169(3). doi: 10.1099/mic.0.001312.
3
Diverse molecular mechanisms of transcription regulation by the bacterial alarmone ppGpp.
Mol Microbiol. 2022 Feb;117(2):252-260. doi: 10.1111/mmi.14860. Epub 2021 Dec 25.
4
Escherichia coli segments its controls on carbon-dependent gene expression into global and specific regulations.
Microb Biotechnol. 2021 May;14(3):1084-1106. doi: 10.1111/1751-7915.13776. Epub 2021 Mar 2.
5
Inducible intracellular membranes: molecular aspects and emerging applications.
Microb Cell Fact. 2020 Sep 4;19(1):176. doi: 10.1186/s12934-020-01433-x.
7
Physiological effects of overexpressed sigma factors on fermentative stress response of Zymomonas mobilis.
Braz J Microbiol. 2020 Mar;51(1):65-75. doi: 10.1007/s42770-019-00158-3. Epub 2019 Nov 7.
8
Transcriptional Responses to ppGpp and DksA.
Annu Rev Microbiol. 2018 Sep 8;72:163-184. doi: 10.1146/annurev-micro-090817-062444.
9
Sponges and Predators in the Small RNA World.
Microbiol Spectr. 2018 Jul;6(4). doi: 10.1128/microbiolspec.RWR-0021-2018.
10
Global Regulation by CsrA and Its RNA Antagonists.
Microbiol Spectr. 2018 Mar;6(2). doi: 10.1128/microbiolspec.RWR-0009-2017.

本文引用的文献

1
The mechanism of E. coli RNA polymerase regulation by ppGpp is suggested by the structure of their complex.
Mol Cell. 2013 May 9;50(3):430-6. doi: 10.1016/j.molcel.2013.03.020. Epub 2013 Apr 25.
2
The magic spot: a ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation.
Mol Cell. 2013 May 9;50(3):420-9. doi: 10.1016/j.molcel.2013.03.021. Epub 2013 Apr 25.
3
Differential regulation by ppGpp versus pppGpp in Escherichia coli.
Nucleic Acids Res. 2013 Jul;41(12):6175-89. doi: 10.1093/nar/gkt302. Epub 2013 Apr 25.
8
Differential stringent control of Escherichia coli rRNA promoters: effects of ppGpp, DksA and the initiating nucleotides.
Microbiology (Reading). 2011 Oct;157(Pt 10):2871-2879. doi: 10.1099/mic.0.052357-0. Epub 2011 Jul 28.
9
The RpoS-mediated general stress response in Escherichia coli.
Annu Rev Microbiol. 2011;65:189-213. doi: 10.1146/annurev-micro-090110-102946.
10
Regulation of alternative sigma factor use.
Annu Rev Microbiol. 2011;65:37-55. doi: 10.1146/annurev.micro.112408.134219.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验